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Abstract
Celestial and momentum space amplitudes for massless particles are related to
each other by a change of basis provided by the Mellin transform. Therefore prop-
erties of celestial amplitudes have counterparts in momentum space amplitudes
and vice versa. In this work, we study the celestial avatar of dual superconformal
symmetry of N = 4 Yang-Mills theory. We also analyze various differential equa-
tions known to be satisfied by celestial n-point tree-level MHV amplitudes and
identify their momentum space origins.

Motivations
The quest for flat space holography has recently received a boost owing to the real-
ization that scattering amplitudes in 4D flat spacetime can be recast as correlation
functions of a 2D conformal field theory living on the celestial sphere [1]–[3]. Then the
celestial CFT (CCFT) becomes a potential candidate for a holographic description of
the flat space S-matrix. A path towards a better understanding of CCFTs involves
translating well understood aspects of momentum space amplitudes into statements
about celestial correlators, as well as mapping momentum space amplitudes onto the
celestial sphere.

In this work, we look at this problem from the both sides: we study the celestial
avatar of the dual superconformal symmetry of N = 4 Yang-Mills; we also identify
the momentum space origins of various differential equations satisfied by celestial
n-point tree level MHV amplitudes.

Celestial Dual Superconformal
Symmetry
Let us first rewrite the expression for the generators Kαα̇ and SAα given in [4] in a
more compact form
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where we have made use of momentum conservation and also introduced the operator
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Let O be an operator acting on the amplitude. The corresponding operator Õ,

which acts on the celestial amplitude is defined by
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Then the operator K̃αα̇ and S̃Aα act on the celestial amplitude as
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Differential Equations
• The celestial tree-level MHV n-point amplitude is given by the Mellin

transform of the amplitude w.r.t. to ωi [3], [5]
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where F (xa, b,∆i) is the Aomoto-Gelfand hypergeometric function. We find that
momentum conservation and GL(n− 4) transformations reduce to the well-known
first-order defining PDEs of AG function.

• Momentum conservation: the total momentum celestial operator is
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µ
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•GL(n − 4) transformations: using the momentum conserving delta function
we can solve for arbitrary 4 ω’s and these are equivalent representations up to
GL(n− 4) transformations. This property of M̃n gives rises to
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• Generalized Banerjee-Ghosh (BG) equation
We derive momentum space generalizations of the differential equations found in
[6] by connecting them to the behaviour of amplitudes under BCFW shifts:

λi → λ̂i = λi + z λj λ̃j → ˆ̃λj = λ̃j − z λ̃i.

For infinitesimal z, this shift is implemented onMn by the Di,j operator we intro-
duced before.
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Mapping this to the celestial sphere and taking Ji = +, we get[
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which generalizes the color-stripped BG equation.

• Connect to BG equation: without loss of generality, we choose i = 1. After
some manipulation, the color-stripped BG equation can be brought to the formα1 + 1 +
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which shows that it reduces to combinations of the hypergeometric equations. The
orange term is identically zero based on the integral representation of F .
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