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1. Overview

The quest for flat space holography has recently received a boost owing to the realiza-
tion that scattering amplitudes in 4D flat spacetime can be recast as correlation func-
tions of a 2D conformal field theory living on the celestial sphere [1, 2]. Then the celestial
CFT (CCFT) becomes a potential candidate for a holographic description of the flat space
S-matrix. In generic CFTs, the OPE coefficients are related to three-point functions and
four-point functions contain information about the spectrum of the theory, which can
be deduced by means of the conformal block decomposition. In CCFT, three- and (tree-
level) four-point correlators make these relationships opaque due to the distributional
nature of their correlators. It was shown in [3] that certain three-point correlators involv-
ing light-ray operators take the form of standard three-point CFT correlators.

In this poster, we

« present the four-point correlator of two gluon light-ray operators and two gluon pri-
maries from the four-gluon celestial amplitude in (2,2) signature spacetime. The cor-
relator is non-distributional and allows us to verify that light-ray operators appear in
the OPE of two gluon primaries. We also carry out a conformal block decomposition of
the terms involving the exchange of gluon operators.

« present the correlator of four gluon light-ray operators in celestial CFT. We find that it
is described by Fox H-functions and generalized I-functions of multiple variables.

Celestial Amplitudes and Light Transforms

2. Preliminary

Celestial amplitudes in (2,2) signature Any (non-zero) null four-vector p* in (2,2) signature can be
uniquely parameterized as

p' =cw (1+z2z,2+2,2—2,1—22) , (1)
where e = +1,w > 0,and z and z are independent real variables.
* In (1, 3) signature: ¢ would indicate whether p# describes an incoming or outgoing particle.

* In (2,2) signature: ¢ labels different Poincaré patches.

Note that it transforms covariantly under SL(2,R) x SL(2,R) conformal transformations:
e —»esgn((cz+d)(ez+d) , z— (az+b)/(cz+d) , z— (az+b)/(cz +d) (2)

Celestial and momentum space amplitudes for massless particles are related to each other by a change
of basis provided by the Mellin transform:
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Correlator of 4 gluon operators The tree-level, color-ordered, four-gluon amplitude is given by the
Parke-Taylor formula and its corresponding celestial amplitude obtained by Mellin transform is
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Light transforms The definitions of the light transforms are summarized as below.

Light Transform Deﬁnition Conformal Weight
Anti-holomorphic | L[O), ;](2,2) = [ E Z|2 57 O (2, 2) (h,1 —h)
Holomorphic L0, 1l(2,2) = Jg 7 Z|2 7 O (25 2) (1—h,h)

Step functions & spacetime signatures The step functions appearing in (4) make light transform in-
tegrals complicated due to the independence of z and z in (2, 2) spacetime.

(1,3) — Euclidean CFT (2,2) — Lorentzian CFT
z is the complex conjugate of z| zand z € R are independent

sgn(z;;z;;) > 0: spacelike

sgn(z;;zij) = 0 sgn(z;;z;;) = 0: null-separated

Sgﬂ(zi]‘ZL’j) < 0: timelike

Our resolution is based on the fact that
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we define the following object and we will study the light transforms of it.
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3. Correlator of 2 light-ray gluons and 2 gluons

The correlator of two light-ray gluon operators and two gluon operators can be described by the Gauss
hypergeometric functions. For example, consider z, z € |0, 1],
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where C(a,b) = B(a,b) + B(a,1 —a—b)+ B(b,1 —a —b), B(a,b) = ['(a)l'(b)
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Leading OPE structures via collinear limit Note that in (7) there is no §(z — z) and we can read off the
leading OPE structures via evaluating the collinear limits. For example, we can read off the two-gluon-
operator-OPE as below, which matches with [4].
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Conformal Block Decompositions For the violet term in (7), we compute its conformal block decom-
position as
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4. Correlator of 4 light-ray gluon operators

We consider the correlator involving two holomorphic and two anti-holomorphic light-ray operators:
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where G(z, Z) function can be organized as
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Here, both Fi(z, z) and Fy(x, Z) are four-marked-point integrals
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and basically Gauss Hypergeometric functions. Our strategy to evaluate the G(z, z) function:

1. Use Mellin-Barnes representation of the Gauss hypergeometric function to extract the x-integral
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2. Do the z-integral first

3. Realize the remaining multivariable Mellin-Barnes-type integrals as the Fox H-function H(z,y) or
Generalized I-functions I(z, . .
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