

Genomics, Networks, and Computational Concepts for Polytopic SUSY Representation Theory

YANGRUI HU 2021 DEC 03

Brown Theoretical Physics Center <u>yangrui_hu@brown.edu</u>

OUTLINE

- A forty-year-old Problem
- The Ectoplasmic Conjecture
- Aynkrafields, Adynkra Digital Analysis (ADA) Scans, and 11D Supergravity Surprise
- SUSY Holography Conjecture
- Conclusions & Outlook

A 40-YEAR-OLD PROBLEM

"Our knowledge can only be finite, while our ignorance must necessarily be infinite."

— Karl Popper

A 40-YEAR-OLD PROBLEM: 11D SUPERFIELDS

- 1974: first 4D superfield written down [Salam, Strathdee, 1974]
- 1978: first 11D on-shell supergravity [Cremmer, Julia, Scherk, 1978]
- Irreducible off-shell formulation for the ten and eleven dimensional supergravity multiplet? Reducible one?
- 2020: 11D Superfield!! [Gates, YH, Mak, JHEP 09 089(2020)]

1: LieART [Feger, Kephart, 2012], SUSYno [Fonseca, 2011]

LINEARIZED NORDSTRÖM SUGRA

 [Gates, YH, Jiang, Mak, JHEP 1907 (2019) 063]: In Nordström theory, only non-conformal spin-0 part of graviton and nonconformal spin-1/2 part of gravitino show up

$$\begin{split} \mathbf{E}_{\alpha} &= \mathbf{D}_{\alpha} + \frac{1}{2} \Psi \mathbf{D}_{\alpha} \quad , \\ \mathbf{E}_{\underline{a}} &= \partial_{\underline{a}} + \Psi \partial_{\underline{a}} - i \frac{2}{5} (\sigma_{\underline{a}})^{\alpha \beta} (\mathbf{D}_{\alpha} \Psi) \mathbf{D}_{\beta} \quad . \end{split}$$

$$\mathbf{E}_{\underline{a}} \Big| = \Big[1 + \Psi \Big] \Big| \delta_{\underline{a}}^{\underline{m}} \partial_{\underline{m}} + \Big[-i\frac{2}{5} (\sigma_{\underline{a}})^{\alpha\beta} (\mathbf{D}_{\alpha} \Psi) \Big] \Big| \mathbf{D}_{\beta} \qquad \mathbf{E}_{\underline{a}} \Big| = \mathbf{e}_{\underline{a}}^{\underline{m}} \partial_{\underline{m}} + \tilde{\psi}_{\underline{a}}^{\beta} \mathbf{D}_{\beta}$$

$$\mathbf{e}_{\underline{a}}^{\underline{m}} = \left[1 + \Psi \right] \left| \delta_{\underline{a}}^{\underline{m}} , \tilde{\psi}_{\underline{a}}^{\beta} = \left[-i\frac{2}{5}(\sigma_{\underline{a}})^{\alpha\beta}(\mathbf{D}_{\alpha}\Psi) \right] \right|$$

LINEARIZED NORDSTRÖM SUGRA

• All component fields of Nordström SG are obtained from spin-0 graviton, spin-1/2 gravitino, and all possible spinorial derivatives to the field strength $G_{\alpha\beta}$

$$T_{\alpha\underline{b}}{}^{\gamma} = -\frac{3}{10}\delta_{\alpha}{}^{\gamma}(\partial_{\underline{b}}\Psi) + \frac{3}{10}(\sigma_{\underline{b}}{}^{\underline{c}})_{\alpha}{}^{\gamma}(\partial_{\underline{c}}\Psi) + i\frac{1}{160}\left[-(\sigma^{[2]})_{\alpha}{}^{\gamma}(\sigma_{\underline{b}[2]})^{\beta\delta} + \frac{1}{3}(\sigma_{\underline{b}[3]})_{\alpha}{}^{\gamma}(\sigma^{[3]})^{\beta\delta}\right]G_{\beta\delta}$$

$$R_{\alpha\beta}{}^{\underline{de}} = -i\frac{6}{5}(\sigma^{[\underline{d}})_{\alpha\beta}(\partial^{\underline{e}]}\Psi) - \frac{1}{80}\left[\frac{1}{3!}(\sigma^{\underline{de}[3]})_{\alpha\beta}(\sigma_{[3]})^{\gamma\delta} + (\sigma^{\underline{a}})_{\alpha\beta}(\sigma_{\underline{a}}{}^{\underline{de}})^{\gamma\delta}\right]G_{\gamma\delta}$$

 $G_{\alpha\beta} = ([\mathbf{D}_{\alpha}, \mathbf{D}_{\beta}]\Psi)$

SUPERSPACE

- D spacetime dimensional superspace: (x^a, θ^α), where
 <u>a</u> = 0,1,2,..., D 1 and α = 1,2,..., d. d is the number of real components of the spinors.
- Number of independent components in unconstrained scalar superfields is 2^d , where $n_B = n_F = 2^{d-1}$

Spacetime Dimension	Lorentz Group	Type of Spinors	d
11	SO(1,10)	Majorana	32
10	SO(1,9)	Majorana-Weyl	16
9	SO(1,8)	Pseudo-Majorana	16
8	SO(1,7)	Pseudo-Majorana	16
7	SO(1,6)	SU(2)-Majorana	16
6	SO(1,5)	SU(2)-Majorana-Weyl	8
5	SO(1,4)	SU(2)-Majorana	8
4	SO(1,3)	Majorana/Weyl	4

4D, $\mathcal{N} = 1$ **SCALAR SUPERFILED**

• General θ -expansion of a scalar superfield in 4D, $\mathcal{N} = 1$ superspace

$$\begin{aligned} \mathcal{V}(x^{\underline{a}},\theta^{\alpha}) &= v^{(0)}(x^{\underline{a}}) + \theta^{\alpha} v^{(1)}_{\alpha}(x^{\underline{a}}) + \theta^{\alpha} \theta^{\beta} \theta^{\gamma} v^{(2)}_{\alpha\beta}(x^{\underline{a}}) \\ &+ \theta^{\alpha} \theta^{\beta} \theta^{\gamma} v^{(3)}_{\alpha\beta\gamma}(x^{\underline{a}}) + \theta^{\alpha} \theta^{\beta} \theta^{\gamma} \theta^{\delta} v^{(4)}_{\alpha\beta\gamma\delta}(x^{\underline{a}}) \end{aligned}$$

• Construct Irreducible θ -monimials

- Level-0: no θ
- Level-1: $\{4\} = \theta^{\alpha}$
- Level-2: $\{1\} = \theta^{\alpha}\theta^{\beta}C_{\alpha\beta}, \{4\} = \theta^{\alpha}\theta^{\beta}i(\gamma^{5}\gamma^{\underline{a}})_{\alpha\beta}, \{1\} = \theta^{\alpha}\theta^{\beta}i(\gamma^{5})_{\alpha\beta}$
- Level-3: $\{4\} = \theta^{\alpha} \theta^{\beta} \theta^{\gamma} C_{\alpha\beta} C_{\gamma\delta}$
- Level-4: $\{1\} = \theta^{\alpha} \theta^{\beta} \theta^{\gamma} \theta^{\delta} C_{\alpha\beta} C_{\gamma\delta}$

$$\mathcal{V}(x^{\underline{a}},\theta^{\alpha}) = v^{(0)}(x^{\underline{a}}) + \theta^{\alpha} v^{(1)}_{\alpha}(x^{\underline{a}}) + \theta^{\alpha} \theta^{\beta} \left[C_{\alpha\beta} v^{(2)}_{1}(x^{\underline{a}}) + i(\gamma^{5})_{\alpha\beta} v^{(2)}_{2}(x^{\underline{a}}) + i(\gamma^{5}\gamma^{\underline{b}})_{\alpha\beta} v^{(2)}_{\underline{b}}(x^{\underline{a}}) \right]$$
$$+ \theta^{\alpha} \theta^{\beta} \theta^{\gamma} C_{\alpha\beta} C_{\gamma\delta} v^{(3)\delta}(x^{\underline{a}}) + \theta^{\alpha} \theta^{\beta} \theta^{\gamma} \theta^{\delta} C_{\alpha\beta} C_{\gamma\delta} v^{(4)}(x^{\underline{a}}) .$$

 $4D, \mathcal{N} = 1 \text{ ADINKRA}$

Level	Component fields	Irrep(s) in $\mathfrak{so}(4)$
0	$f(x^{\underline{a}})$	{1}
1	$\psi_{lpha}(x^{\underline{a}})$	{4}
2	$g(x^{\underline{a}}), h(x^{\underline{a}}), v_{\underline{b}}(x^{\underline{a}})$	$\{1\},\{1\},\{4\}$
3	$\chi^{\delta}(x^{\underline{a}})$	{4}
4	$N(x^{\underline{a}})$	{1}

[Faux, Gates, 2005], [Doran, Faux, Gates, Hubsch, Iga, Landweber, 2008] "The use of symbols to connote ideas which defy simple verbalization is perhaps one of the oldest of human traditions. "

CHIRAL & VECTOR SUPERMULTIPLETS

- Consider gauge conditions
 & chiral condition
- How to carry out the process for a general representation of spacetime supersymmetry is unknown! (Motivation for the adinkra approach to the study of superfields)

THE 4,294,967,296 PROBLEM

• In 11D, we have 32 Grassmann coordinates

$$\mathcal{V}(x,\theta) = \mathbf{v}^{(0)}(x) + \sum_{n=1}^{32} \mathbf{v}^{(n)}_{\alpha_1 \cdots \alpha_n}(x) \,\theta^{\alpha_1} \cdots \theta^{\alpha_n}$$

• $2^{32} = 4,294,967,296$ total degrees of freedom

- Question: what irreducible representations of \$(1,10) occur among the 4,294,967,296 degrees of freedom in the scalar superfield?
- Until 2020, the answer was an unresolved puzzle.

TRADITIONAL PATH → THE 4,294,967,296 PROBLEM

- Start from constructing irreducible θ -monomials
- Quadratic:

 $\begin{cases} 1 \} & C_{\alpha\beta} \, \theta^{\alpha} \theta^{\beta} \\ \{ 165 \} & (\gamma^{\underline{abc}})_{\alpha\beta} \, \theta^{\alpha} \theta^{\beta} \\ \{ 330 \} & (\gamma^{\underline{abcd}})_{\alpha\beta} \, \theta^{\alpha} \theta^{\beta} \end{cases}$

• Cubic level: []_{IR} means that a single γ -trace of the expression is by definition equal to zero.

$$\{5, 280\} \qquad \left[(\gamma^{\underline{abcd}})_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,\theta^{\gamma} \right]_{IR}$$

$$\{3, 520\} \qquad \left[(\gamma^{\underline{abcd}})_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,(\gamma_{\underline{d}})_{\gamma\delta} \,\theta^{\delta} \right]_{IR} , \qquad \left[(\gamma^{\underline{abc}})_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,\theta^{\gamma} \right]_{IR}$$

$$\{1, 408\} \qquad \left[(\gamma^{\underline{abcd}})_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,(\gamma_{\underline{cd}})_{\gamma\delta} \,\theta^{\delta} \right]_{IR} , \qquad \left[(\gamma^{\underline{abc}})_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,(\gamma_{\underline{c}})_{\gamma\delta} \,\theta^{\delta} \right]_{IR}$$

$$\{320\} \qquad \left[(\gamma^{\underline{abcd}})_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,(\gamma_{\underline{bcd}})_{\gamma\delta} \,\theta^{\delta} \right]_{IR} , \qquad \left[(\gamma^{\underline{abc}})_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,(\gamma_{\underline{bc}})_{\gamma\delta} \,\theta^{\delta} \right]_{IR}$$

$$\{32\} \qquad (\gamma^{\underline{abcd}})_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,(\gamma_{\underline{abcd}})_{\gamma\delta} \,\theta^{\delta} , \qquad (\gamma^{\underline{abc}})_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,(\gamma_{\underline{abc}})_{\gamma\delta} \,\theta^{\delta} , \qquad C_{\alpha\beta} \,\theta^{\alpha} \theta^{\beta} \,\theta^{\gamma}$$

$$\frac{32 \times 31 \times 30}{3!} = \{4,960\} = \{32\} \oplus \{1,408\} \oplus \{3,520\}$$

12

THE FIRST SIGN OF TROUBLE

- θ -monomials have multiple expressions
- You wouldn't know two versions of {320} and {5,280} are identically zero
 - Explicit proof by using Fierz identities presented in Appendix D of [Gates, YH, Mak, JHEP 09 089(2020)]
- Even for gamma matrix multiplications, you can get multiple expressions. e.g.

$$\begin{split} &\gamma^{\underline{abc}}\gamma_{\underline{defgh}} \\ = \frac{1}{5!4!2!}\delta_{[\underline{d}}{}^{[\underline{a}}\epsilon_{\underline{efgh}}{}^{\underline{bc}][5]}\gamma_{[5]} - \frac{1}{3!}\epsilon^{\underline{abc}}{\underline{defgh}}{}^{[3]}\gamma_{[3]} + \frac{1}{12}\delta_{[\underline{d}}{}^{[\underline{a}}\delta_{\underline{e}}{}^{\underline{b}}\gamma_{\underline{fgh}}]{}^{\underline{c}]} - \frac{1}{2}\delta_{[\underline{d}}{}^{\underline{a}}\delta_{\underline{e}}{}^{\underline{b}}\delta_{\underline{f}}{}^{\underline{c}}\gamma_{\underline{gh}}] \\ = \frac{1}{4!2!}\epsilon^{[\underline{4}]}{\underline{defgh}}{}^{[\underline{ab}}\gamma^{\underline{c}]}{}_{[\underline{4}]} - \frac{1}{3!}\epsilon^{\underline{abc}}{\underline{defgh}}{}^{[3]}\gamma_{[3]} + \frac{1}{12}\delta_{[\underline{d}}{}^{[\underline{a}}\delta_{\underline{e}}{}^{\underline{b}}\gamma_{\underline{fgh}}]{}^{\underline{c}]} - \frac{1}{2}\delta_{[\underline{d}}{}^{\underline{a}}\delta_{\underline{e}}{}^{\underline{b}}\delta_{\underline{f}}{}^{\underline{c}}\gamma_{\underline{gh}}] \\ = \frac{1}{4!4!}\epsilon^{[\underline{4}]\underline{abc}}{}_{[\underline{defg}}\gamma_{\underline{h}][\underline{4}]} - \frac{1}{3!}\epsilon^{\underline{abc}}{}_{\underline{defgh}}{}^{[3]}\gamma_{[3]} + \frac{1}{12}\delta_{[\underline{d}}{}^{[\underline{a}}\delta_{\underline{e}}{}^{\underline{b}}\gamma_{\underline{fgh}}]{}^{\underline{c}]} - \frac{1}{2}\delta_{[\underline{d}}{}^{\underline{a}}\delta_{\underline{e}}{}^{\underline{b}}\delta_{\underline{f}}{}^{\underline{c}}\gamma_{\underline{gh}}] \end{split}$$

THE ECTOPLASMIC CONJECTURE

"I am thinking about something much more important than bombs. I am thinking about computers"

– John von Neumann

A REPRESENTATION OF SUPERSPACE

• The volume of the sphere represents the entirety of superspace and the equatorial plane represents the bosonic subspace

A REPRESENTATION OF SUPERSPACE

• The volume of the sphere represents the entirety of superspace and the equatorial plane represents the bosonic subspace

BRANCHING RULES 11D SCALAR SUPERFIELD

- Definition: a Branching Rule is a relation between a representation of a Lie algebra $\mathfrak g$ and representations of its Lie subalgebra $\mathfrak h$

$$\mathfrak{su}(32) \supset \mathfrak{so}(1,10) \quad \Rightarrow \quad \mathcal{R}_{\mathfrak{su}(32)} \xrightarrow{\text{branching rules}} \bigoplus \mathcal{R}_{\mathfrak{so}(1,10)}$$

• Intuition: θ -monomials equivalent to irreps of $\mathfrak{su}(32)$

BRANCHING RULES PROJECTION MATRIX

- Branching rules are determined by a single projection matrix
- The projection matrix is fixed by the weight diagrams of a branching rule of them, where weight diagrams can be written down by Cartan matrix of g and Dynkin labels
- {32} in $\mathfrak{su}(32) = \{32\}$ in $\mathfrak{so}(1,10)$ gives

	(0	0	0	0	0	0	1	0	0	1	0	0	1	0	1	2	1	0	1	0	0	1	0	0	1	0	0	0	0	0	0)
D	0	0	0	0	1	2	1	1	2	1	1	2	1	1	0	0	0	1	1	2	1	1	2	1	1	2	1	0	0	0	0
$P_{su(32) \rightarrow so(110)} =$	0	0	1	2	1	0	0	0	0	0	0	0	1	2	3	2	3	2	1	0	0	0	0	0	0	0	1	2	1	0	0
$Su(52) _ So(1,10)$	0	1	0	0	0	1	1	1	0	1	2	2	1	0	0	0	0	0	1	2	2	1	0	1	1	1	0	0	0	1	0
	(1	0	1	0	1	0	1	2	3	2	1	0	1	2	1	2	1	2	1	0	1	2	3	2	1	0	1	0	1	0	1)

BRANCHING RULES 11D SCALAR SUPERFIELD

Examples

 Dictionary & Graphical Rules in [Gates, YH, Mak, arXiv: 2006.03609] (Bosonic Young Tableaux & Spinorial Young Tableaux introduced)

h_{µv}

h

з-form

• Level-16: $(2){1} \oplus {11} \oplus {65} \oplus (2){165} \oplus {275} \oplus (2){330} \oplus {462} \oplus (2){935} \oplus (2){1,144} \oplus (2){1,144}$ $\{1, 430\} \oplus \{2, 717\} \oplus \{3, 003\} \oplus (3)\{4, 290\} \oplus (2)\{5, 005\} \oplus \{7, 007\} \oplus (3)\{7, 128\} \oplus \{7, 150\} \oplus (3)\{7, 128\} \oplus \{7, 150\} \oplus (3)\{7, 128\} \oplus (3)\}$ $\{7, 293\} \oplus (4)\{7, 865\} \oplus \{11, 583\} \oplus (4)\{15, 400\} \oplus \{16, 445\} \oplus (5)\{17, 160\} \oplus (3)\{22, 275\} \oplus (11, 10)\} \oplus (11, 10) \oplus (1$ (3) {23, 595} \oplus (2) {23, 595'} \oplus (2) {26, 520} \oplus (2) {28, 314} \oplus (2) {28, 798} \oplus (3) {33, 033} \oplus $\{35,750\} \oplus (3) \\ \{37,752\} \oplus \\ \{47,190\} \oplus (3) \\ \{57,915\} \oplus (3) \\ \{58,344\} \oplus (3) \\ \{70,070\} \oplus \\ \{72,930\} \oplus \\ \{73,930\} \oplus \\$ (5) {**78**, **650**} \oplus (2) {**81**, **510**} \oplus (4) {**85**, **085**} \oplus {**91**, **960**} \oplus (2) {**112**, **200**} \oplus (6) {**117**, **975**} \oplus $(2){137,445} \oplus {162,162} \oplus (5){175,175} \oplus (5){178,750} \oplus (2){181,545} \oplus (2){182,182} \oplus$ $(3){188,760} \oplus {218,295} \oplus {235,950} \oplus {251,680'} \oplus (4){255,255} \oplus (2){266,266} \oplus$ $(3) \{268, 125\} \oplus (7) \{289, 575\} \oplus (4) \{333, 234\} \oplus (4) \{382, 239\} \oplus (2) \{386, 750\} \oplus (2) \{448, 305\} \oplus (2)$ $\{490, 490\} \oplus (6)\{503, 965\} \oplus (3)\{525, 525\} \oplus \{526, 240\} \oplus \{616, 616\} \oplus \{628, 320\} \oplus$ $(2){650,650} \oplus {674,817} \oplus {715,715} \oplus (2){722,358} \oplus (6){802,230} \oplus {825,825} \oplus$ $(2){862,125} \oplus (6){868,725} \oplus (4){875,160} \oplus (2){948,090} \oplus (4){984,555} \oplus {1,002,001} \oplus (2){948,090} \oplus (2){948,0$ (3) {1,100,385} \oplus (2) {1,115,400} \oplus (2) {1,123,122} \oplus {1,190,112} \oplus {1,191,190} \oplus $\{1, 245, 090\} \oplus (4)\{1, 274, 130\} \oplus (5)\{1, 310, 309\} \oplus (2)\{1, 412, 840\} \oplus (5)\{1, 519, 375\} \oplus$ $\{1, 533, 675\} \oplus (4)\{1, 673, 672\} \oplus (2)\{1, 718, 496\} \oplus \{1, 758, 120\} \oplus (3)\{1, 786, 785\} \oplus$ $\{2, 147, 145\} \oplus (2)\{2, 450, 250\} \oplus (2)\{2, 571, 250\} \oplus \{2, 598, 960\} \oplus (3)\{2, 743, 125\} \oplus$ $\{2, 858, 856\} \oplus \{3, 056, 625\} \oplus \{3, 083, 080\} \oplus (4) \{3, 128, 697\} \oplus \{3, 586, 440\} \oplus (3) \{3, 641, 274\} \oplus (3) \oplus (3)$ $(2){3,792,360} \oplus {3,993,990} \oplus {4,332,042} \oplus {4}{4,506,040} \oplus {2}{4,708,704} \oplus$ $\{4, 781, 920\} \oplus (6)\{5, 214, 495\} \oplus (2)\{5, 214, 495'\} \oplus (2)\{5, 651, 360\} \oplus \{5, 834, 400\} \oplus$ $(2)\{6,276,270\} \oplus \{7,468,032\} \oplus (3)\{7,487,480\} \oplus (2)\{7,865,000\} \oplus (3)\{7,900,750\} \oplus$ $\{8,893,500\} \oplus \{9,845,550\} \oplus \{10,696,400'\} \oplus \{10,830,105\} \oplus (2)\{11,981,970\} \oplus$ $\{12, 972, 960\} \oplus \{14, 889, 875\} \oplus \{17, 606, 160\} \oplus \{18, 718, 700\} \oplus (3)\{20, 084, 064\} \oplus$ $\{30, 604, 288\} \oplus \{31, 082, 480\}$

 $\psi_{\mu}{}^{\alpha}$ • Level-17: $(2){32} \oplus {320} \oplus (2){1,408} \oplus {1,760} \oplus (3){3,520} \oplus (2){4,224} \oplus {5,280} \oplus$ (3) {7,040} \oplus (3) {10,240} \oplus (2) {22,880} \oplus (3) {24,960} \oplus (6) {28,512} \oplus (3) {36,960} \oplus (4) {45,056} \oplus (4) {45,760} \oplus {64,064} \oplus (6) {91,520} \oplus (3) {128,128} \oplus (6) {134,784} \oplus (3) {137, 280} \oplus (4) {147, 840} \oplus (3) {157, 696} \oplus (5) {160, 160} \oplus {160, 160'} \oplus (3) {183, 040} \oplus $(6){219,648} \oplus {251,680} \oplus (3){264,000} \oplus (3){274,560} \oplus (3){292,864} \oplus {302,016} \oplus$ $\{366, 080\} \oplus (2)\{457, 600\} \oplus (5)\{480, 480\} \oplus (3)\{570, 240\} \oplus (7)\{573, 440\} \oplus (2)\{672, 672\} \oplus$ (4) {**798**, **720**} \oplus (5) {**896**, **896**} \oplus (4) {**901**, **120**} \oplus (8) {**1**, **034**, **880**} \oplus (3) {**1**, **140**, **480**} \oplus $\{1, 171, 456\} \oplus \{1, 208, 064\} \oplus (2)\{1, 351, 680\} \oplus (3)\{1, 425, 600\} \oplus (2)\{1, 757, 184\} \oplus$ (2) {1, 921, 920} \oplus (3) {1, 936, 000} \oplus (3) {2, 013, 440} \oplus (2) {2, 038, 400} \oplus (5) {2, 114, 112} \oplus (3) {2, 168, 320} \oplus (6) {2, 288, 000} \oplus {2, 342, 912} \oplus (3) {2, 358, 720} \oplus (2) {2, 402, 400} \oplus $\{2,446,080\} \oplus (3)\{3,706,560\} \oplus (2)\{3,706,560'\} \oplus (3)\{3,794,560\} \oplus \{4,026,880\} \oplus$ (6) {4, 212, 000} \oplus (2) {5, 720, 000} \oplus (2) {5, 857, 280} \oplus {5, 930, 496} \oplus (3) {6, 040, 320} \oplus $\{6, 307, 840\} \oplus \{6, 864, 000\} \oplus (3)\{7, 208, 960\} \oplus (3)\{8, 781, 696\} \oplus (3)\{9, 123, 840\} \oplus$ $\{10, 570, 560\} \oplus \{10, 570, 560'\} \oplus (2)\{11, 714, 560\} \oplus \{11, 927, 552\} \oplus (2)\{12, 390, 400\} \oplus$ (2) {13, 246, 464} \oplus (2) {13, 453, 440} \oplus {15, 375, 360} \oplus {30, 201, 600} \oplus {33, 116, 160} \oplus {33, 554, 432}

As of now and to the best of our knowledge, no other research group exists that has demonstrated such a capacity to identify the component field spectra in this detail in such systems

Level $\#$	Component Field Count
0	1
1	1
2	3
3	3
4	8
5	9
6	19
7	23
8	49
9	55
10	99
11	106
12	173
13	171
14	247
15	225
16	296

• $N_{Bosonic \ Fields} = 1,494$

 $\dots, h_{\mu\nu}, A_{\mu\nu\rho}, \dots$

• $N_{Fermionic \ Fields} = 1,186$

 $\ldots, \psi_{\mu}{}^{\alpha}, \ldots$

BRANCHING RULES SUMMARY TABLE

D	Branching Rules \rightarrow component fields	Branching Rules \rightarrow BYT
11	$A_{31} \supset B_5$	$A_{10} \supset B_5$
10	$A_{15} \supset D_5$	$A_9 \supset D_5$
9	$A_{15} \supset B_4$	$A_8 \supset B_4$
8	$A_{15} \supset D_4$	$A_7 \supset D_4$
7	$A_{15} \supset B_3$	$A_6 \supset B_3$
6	$A_7 \supset D_3 = A_3$	$A_5 \supset D_3$
5	$A_7 \supset B_2 \cong C_2$	$A_4 \supset B_2$
4	$\overline{A_3 \supset D_2 \cong A_1 \times A_1}$	$A_3 \supset D_2$

- 10D: [Gates, YH, Mak, JHEP 02 176(2020)]
- 11D: [Gates, YH, Mak, JHEP 09 089(2020)]
- 4D 9D: [Gates, YH, Mak, JHEP 09 202(2021)]
- Dictionary & Graphical Rules: [Gates, YH, Mak, arXiv: 2006.03609]

ADYNKRAFIELDS, ADA SCANS, AND 11D SUGRA SURPRISE

"The best way to have a good idea is to have a lot of ideas"

Linus Pauling

VISIBLE INSIGHTS FROM THE 10D N=1 SCALAR SF

26

VISIBLE INSIGHTS FROM THE 10D N=1 SCALAR SF

Level - 0	$\Phi(x)$,		
Level - 1	$\Psi_{lpha}(x)$,		
Level - 2	$\Phi_{\{\underline{a}_1\underline{b}_1\underline{c}_1\}}(x) ,$		
Level - 3	$\Psi_{\{\underline{a}_1\underline{b}_1\}}{}^{\alpha}(x)$,		
Level - 4	$\Phi_{\{\underline{a}_1\underline{b}_1,\underline{a}_2\underline{b}_2\}}(x) ,$	$\Phi_{\{\underline{a}_2 \underline{a}_1\underline{b}_1\underline{c}_1\underline{d}_1\underline{e}_1\}^+}(x) ,$	
Level - 5	$\Psi_{\{\underline{a}_1\underline{b}_1\underline{c}_1\underline{d}_1\underline{e}_1\}^+}{}^\alpha(x) ,$	$\Psi_{\{\underline{a}_2 \underline{a}_1\underline{b}_1\}}{}^{\alpha}(x) ,$	
Level - 6	$\Phi_{\{\underline{a}_2\underline{b}_2 \underline{a}_1\underline{b}_1\underline{c}_1\underline{d}_1\underline{e}_1\}^+}(x) ,$	$\Phi_{\{\underline{a}_2,\underline{a}_3 \underline{a}_1\underline{b}_1\underline{c}_1\}}(x) ,$	
Level - 7	$\Psi_{\{\underline{a}_1,\underline{a}_2,\underline{a}_3\}\alpha}(x) ,$	$\Psi_{\{\underline{a}_2 \underline{a}_1\underline{b}_1\underline{c}_1\}}{}^{\alpha}(x) ,$	
Level - 8	$\Phi_{\{\underline{a}_1,\underline{a}_2,\underline{a}_3,\underline{a}_4\}}(x) ,$	$\Phi_{\{\underline{a}_1\underline{b}_1\underline{c}_1,\underline{a}_2\underline{b}_2\underline{c}_2\}}(x) ,$	$\Phi_{\{\underline{a}_2,\underline{a}_3 \underline{a}_1\underline{b}_1\underline{c}_1\underline{d}_1\}}(x) ,$
Level - 9	$\Psi_{\{\underline{a}_1,\underline{a}_2,\underline{a}_3\}}{}^{\alpha}(x) ,$	$\Psi_{\{\underline{a}_2 \underline{a}_1\underline{b}_1\underline{c}_1\}\alpha}(x) ,$	
Level - 10	$\Phi_{\{\underline{a}_2\underline{b}_2 \underline{a}_1\underline{b}_1\underline{c}_1\underline{d}_1\underline{e}_1\}^-}(x) ,$	$\widehat{\Phi}_{\{\underline{a}_2,\underline{a}_3 \underline{a}_1\underline{b}_1\underline{c}_1\}}(x) ,$	
Level - 11	$\Psi_{\{\underline{a}_1\underline{b}_1\underline{c}_1\underline{d}_1\underline{e}_1\}^{-}\alpha}(x) ,$	$\Psi_{\{\underline{a}_2 \underline{a}_1\underline{b}_1\}\alpha}(x) ,$	
Level - 12	$\widehat{\Phi}_{\{\underline{a}_1\underline{b}_1,\underline{a}_2\underline{b}_2\}}(x) ,$	$\Phi_{\{\underline{a}_2 \underline{a}_1\underline{b}_1\underline{c}_1\underline{d}_1\underline{e}_1\}^-}(x) ,$	
Level - 13	$\Psi_{\{\underline{a}_1\underline{b}_1\}\alpha}(x)$,		
Level - 14	$\widehat{\Phi}_{\{\underline{a}_1\underline{b}_1\underline{c}_1\}}(x) ,$		
Level - 15	$\Psi^{lpha}(x)$,		
Level - 16	$\widehat{\Phi}(x)$.		

ADYNKRAS

- 10D, N=1 Adynkra graph in Dynkin labels / Young Tableaux forms
- Can we define a new formalism in which θmonomials are replaced by Young Tableau?

THE 10D, N=1 SUPERFIELD GENOME

 $[\ell] = [\theta]$

10D, N=1 ADYNKRAFIELDS

FROM 10D, N=1 BACK TO 1D, N=16

- 10D, N=1 \rightarrow 1D, N=16
- We can take a limit:
 - all of the field variables depend solely on a time-like coordinate
 T
 - impose the condition that $(\ell)^2 = 1$

FROM 10D, N=1 BACK TO 1D, N=16

- It contains 32,768 bosons and 32,768 fermions.
- It also contains the information associated with the Lorentz representations (via the YT's) of the original 10D, N = 1 scalar supermultiplet for which it is the hologram

ADYNKRA DIGITAL ANALYSIS SCANS BREITENLOHNER APPROACH

- Idea: attach bosonic and spinor indices on the scalar superfield and look for components that occur onshell [Gates, YH, Mak, JHEP 03 (2021) 074]
- The first off-shell description of 4D, $\mathcal{N} = 1$ supergravity was carried out by Breitenlohner in 1977: start with the component fields of the WZ gauge 4D, $\mathcal{N} = 1$ vector supermultiplet

$$\begin{aligned} \mathrm{D}_{\alpha} v_{\underline{a}} &= (\gamma_{\underline{a}})_{\alpha}{}^{\beta} \lambda_{\beta} , \\ \mathrm{D}_{\alpha} \lambda_{\beta} &= -i \frac{1}{4} ([\gamma^{\underline{a}}, \gamma^{\underline{b}}])_{\alpha\beta} (\partial_{\underline{a}} v_{\underline{b}} - \partial_{\underline{b}} v_{\underline{a}}) + (\gamma^{5})_{\alpha\beta} \mathrm{d} , \\ \mathrm{D}_{\alpha} \mathrm{d} &= i (\gamma^{5} \gamma^{\underline{a}})_{\alpha}{}^{\beta} \partial_{\underline{a}} \lambda_{\beta} , \end{aligned}$$

Do a series of replacements of the fields

 $v_{\underline{a}} \rightarrow h_{\underline{a}\,\underline{b}}$, $\lambda_{\beta} \rightarrow \psi_{\underline{b}\,\beta}$, $\mathbf{d} \rightarrow A_{\underline{b}}$

11D SUPERGRAVITY SURPRISE PPOINCARE VIELBEIN & GRAVITINO

Decompositions of the inverse frame and gravitino fields in 11D yield

$$e_{\underline{a}}^{\underline{m}} = \{h_{(\underline{a}\underline{b})} + \eta_{\underline{a}\underline{b}}h + h_{[\underline{a}\underline{b}]}\}\eta^{\underline{b}\underline{m}} \\ \{121\} \quad \{65\} \quad \{1\} \quad \{55\}$$

- $h_{(ab)}$ is the conformal graviton, h is the trace, and $h_{[ab]}$ is the two form

$$\begin{split} \tilde{\psi}_{\underline{a}}^{\ \alpha} &= \psi_{\underline{a}}^{\ \alpha} - \frac{1}{11} (\gamma_{\underline{a}})^{\alpha\beta} \psi_{\beta} \\ \{352\} \quad \{320\} \quad \{32\} \end{split}$$

• $\psi_a^{\ \alpha}$ is the conformal gravitino and ψ_{β} is the γ -trace

11D SUPERGRAVITY SURPRISE PREPOTENTIAL CANDIDATES

• Semi-prepotential candidate: $V = D^{\alpha} V_{\alpha}$

Physical Component	Irrep	Level
graviton h _{ab}	$\{65\}, \{1\}$	16
gravitino $\psi_{\underline{a}}{}^{\beta}$	{320}, {32}	17
3-form <i>B</i> _[3]	{165}	16

• Prepotential candidate: V_{α}

Contains 2-form at level-17 ⇒ Poincare vielbein

SUSY HOLOGRAPHY CONJECTURE

"Living is worthwhile if one can contribute in some small way to this endless chain of progress."

– Paul A.M. Dirac

SUSY HOLOGRAPHY CONJECTURE

- SUSY Holography Conjecture: reduce higher dimensional supersymmetric models to 1D, 1D models encode the structure of higher dimensional models.
- Key object: adinkra a graphical representation of 1D, Nextended SUSY algebra [Faux, Gates, 2005]
- 1D N-extended Super-Poincaré (1IN) generated by $\{Q_I, Q_J\} = 2i\delta_{IJ}\partial_{\tau'} [Q_I, \partial_{\tau}] = [\partial_{\tau}, \partial_{\tau}] = 0$
- Off-shell supermultiplet: $A, B = 1, ..., d; I = 1, ..., N; c = \pm 1; \text{ and } \lambda = 0, 1$ $Q_I \phi_A(\tau) = c \partial_{\tau}^{\lambda} \psi_B(\tau),$ $Q_I \psi_B(\tau) = \frac{i}{c} \partial_{\tau}^{1-\lambda} \phi_A(\tau),$

DEFINITION OF THE ADINKRA

Action of Q_I	Adinkra	Action of Q_I	Adinkra
$Q_I \left[\begin{array}{c} \psi_B \\ \phi_A \end{array} \right] = \left[\begin{array}{c} i \dot{\phi}_A \\ \psi_B \end{array} \right]$		$Q_I \left[egin{array}{c} \psi_B \ \phi_A \end{array} ight] = \left[egin{array}{c} -i \dot{\phi}_A \ -\psi_B \end{array} ight]$	₽ ^B I ¦ ∣ ∂ A
$Q_I \left[\begin{array}{c} \phi_A \\ \psi_B \end{array} \right] = \left[\begin{array}{c} i \dot{\psi}_B \\ \phi_A \end{array} \right]$		$Q_I \left[\begin{array}{c} \phi_A \\ \psi_B \end{array} \right] = \left[\begin{array}{c} -i\dot{\psi}_B \\ -\phi_A \end{array} \right]$	

[Doran, Iga, Kostiuk, Landweber, Mendez-Diez, 2013]

- Each white vertex = bosonic component field/its time derivative
- Each black vertex = fermionic component field/its time derivative
- Edges colored by color $I(Q_I)$
- Edge is <u>oriented</u> : white -> black if $\lambda = 0$; black -> white if $\lambda = 1$
- Edge is dashed if c = -1; solid if c = 1

1D, N=4 EXAMPLE: 4D, N=1 CHIRAL

• SUSY transformation laws for 4D, N=1 Chiral supermultiplet:

 $D_a A = \psi_a , \quad D_a B = i(\gamma^5)_a{}^b \psi_b , \quad D_a F = (\gamma^\mu)_a{}^b \partial_\mu \psi_b , \quad D_a G = i(\gamma^5 \gamma^\mu)_a{}^b \partial_\mu \psi_b ,$ $D_a \psi_b = i(\gamma^\mu)_{ab} \partial_\mu A - (\gamma^5 \gamma^\mu)_{ab} \partial_\mu B - iC_{ab}F + (\gamma^5)_{ab}G .$

Restrict the functions only to be dependent on the t-coordinate ⇒
 4D, N=1 Chiral multiplet on the 0-Brane.

[Gates, YH, Stiffler, 2019, arXiv: 1904.01738]

GRAPHS AS NETWORKS

$(L_1)_{i\hat{k}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 & - \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$ \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \end{pmatrix} , \ (L_2)_{i\hat{k}} = $	$ \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} $
$(L_3)_{i\hat{k}} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & $	$ \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} , \ (L_4)_{i\hat{k}} = $	$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} .$

- Adinkra (network) ⇔ L/R adjacent matrices
- SUSY transformation laws encoded by valise adinkras can be described by $D_I \Phi_i = i(L_I)_{i\hat{k}} \Psi_{\hat{k}}$, $D_I \Psi_{\hat{k}} = i(R_I)_{\hat{k}i} \Phi_i$, $R_I = (L_I)^T$
- $N L_{I}$ and $N R_{I}$ matrices satsify the so-called Garden Algebra GR(d,N): $L_{I}R_{J} + L_{J}R_{I} = 2\delta_{IJ}I_{d}$, $R_{I}L_{J} + R_{J}L_{I} = 2\delta_{IJ}I_{d}$

N=4: TOTAL # & CLASSIFICATIONS

- What's the total number of all possible N=4 valise adinkras?
 - signed permutations of colors and bosons from two quaternion seed adinkras $(L_I)_{i\hat{i}} = (BC_4)_{ik}(BC_3)_{IJ}(L_J^{seed})_{k\hat{i}}$
 - counting = $2 \times BC_4(boson) \times BC_4(color)/Isometries = 36,864$ [Gates, Iga, Kang, Korotkikh, Stiffler, 2019]
 - Isometries: sign double counting [e.g. $(\overline{13}) = -(\overline{24})$] × Kleinfour subgroup $\leftrightarrow \{2 \times 4 = 8\}$
 - Classifications? Isomorphism-equivalence classes: [Gates, YH, Stiffler, 2019], [Gates, YH, Stiffler, 2020]

N=4: PERMUTOHEDRON

- What mathematical structure secretly contains information from higher dimensions?
- Toy models: visualizing S_4 (permutohedron)

• Consider 4D, N=1 to 1D, N=4, a dissection of S_4 is required

N=4: HOPPING OPERATORS

- Q: what operators connect all the states within the specified SUSY quartets? — "Hopping" Operators
- A: Klein-four subgroup ("Klein's Vierergruppe)

 $\mathcal{H}_{1} = ()$ $\mathcal{H}_{2} = (12)(34)$ $\mathcal{H}_{3} = (23)(12)(34)(23)$ $\mathcal{H}_{4} = (23)(12)(34)(23)(12)(34)$

[Cianciara, Gates, YH, Kirk, JHEP 05, 077(2021)]

NEXT STOP: N=8?

 N=8: 4D, N = 2 SUSY & the 40,320 Nodes & 141,120 Edges Of the "Omnitruncated 7-simplex"

Also called Hexipentisteriruncicantitruncated 7-simplex. Picture is obtained from Wikipedia

CONCLUSIONS & OUTLOOK

"The most effective way to do it, is to do it."

Amelia Earhart

CONCLUSIONS

- Our work substantially lowers the computational costs of determining how to embed a set of component fields within a Salam-Strathdee superfield with no additional constraints.
- These embeddings are constructed without information from an off-shell component formulation for the first time
- Our work leads to a formalism demonstrating a manefest linear realization of the Lorentz group
- A proposal to identify possible supergravity prepotential candidates was presented
- These newly developed techniques can also be applied to create unprecedented understanding of M-Theory and F-Theory as relates to their SG limits

OPEN QUESTIONS

- How to determine the complete sets of SUSY transformations for these fields?
 - Part of the information is encoded in the adynkra graphs as discussed in [Gates, YH, Mak, arXiv: 2006.03609]
- Explicit SUSY covariant derivative operation to adynkrafields
- The Salam-Strathdee superfield superconformal gauge group of supergravity
 - Starting point: a re-imaging of adynkrafield formulation of 4D,
 N = 1 supergravity

THANK YOU!!

"The object of pure Physics is the unfolding of the laws of the intelligible world; the object of pure Mathematics that of unfolding the laws of human intelligence."

— J. J. Sylvester

10D IRREDUCIBLE BOSONIC YOUNG TABLEAUX

$$\underline{\underline{a}_1 \underline{a}_2} = \{55\} \qquad \underline{\underline{a}_1 \underline{a}_2}_{\text{IR}} = \{54\} \qquad \tilde{h}_{\underline{ab}} = h_{\underline{ab}} + \eta_{\underline{ab}} h_{\underline{ab}}$$

$$[2,0,0,0,0] \qquad \{55\} = \{54\} \oplus \{1\}$$

• Consider the Projection Matrix for $\mathfrak{su}(10) \supset \mathfrak{so}(10)$:

$$P_{\mathfrak{su}(10)\supset\mathfrak{so}(10)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \end{pmatrix}$$

- Ordinary Young Tableaux in SU(10): [a, b, c, d, e, f, g, h, i]
- Define the corresponding bosonic irrep in SO(10) has the Dynkin label as [a, b, c, d, d + 2e]:

 $[a, b, c, d, d + 2e] = [a, b, c, d, e, 0, 0, 0, 0] P_{\mathfrak{su}(10) \supset \mathfrak{so}(10)}^{T}$

DICTIONARY: IRREP \leftrightarrow FIELD VARIABLES

Dynkin labels ↔ BYT

BYT ↔ Index structures of field variables

IRREDUCIBLE CONDITIONS

Branching Rules for \$u(10) ⊃ \$o(10) tell us the irreducible conditions

• D dimension: $\mathfrak{su}(D) \supset \mathfrak{so}(D)$

10D IRREDUCIBLE SPINORIAL YOUNG TABLEAUX

- Two spinor indices \rightarrow sigma matrix \rightarrow vector indices
- Irreducible SYT \leftarrow Irreducible BYT \otimes {16} (or {16})

 $\{10\} \otimes \{16\} = \bigsqcup_{IR} \otimes \{16\} = \{\overline{16}\} \oplus \{\overline{144}\}$ $\{45\} \otimes \{16\} = \bigsqcup_{IR} \otimes \{16\} = \{16\} \oplus \{144\} \oplus \{560\}$

THE 4D, N=1MINIMAL SUPERMULTIPLET ZOO

- (S01.) Chiral Supermultiplet : (A, B, ψ_a, F, G) ,
- (S02.) Hodge Dual #1 Chiral Supermultiplet : $(\widehat{A}, \widehat{B}, \psi_a, f_{\mu\nu\rho}, \widehat{G})$,
- (S03.) Hodge Dual #2 Chiral Supermultiplet : $(\widetilde{A}, \widetilde{B}, \psi_a, \widehat{F}, g_{\mu\nu\rho})$,
- (S04.) Hodge Dual #3 Chiral Supermultiplet : (Å, Å, ψ_a , $\check{f}_{\mu\nu\rho}$, $\check{g}_{\mu\nu\rho}$),
- (S05.) Tensor Supermultiplet : $(\varphi, B_{\mu\nu}, \chi_a)$,
- (S06.) Axial Tensor Supermultiplet : $(\widehat{\varphi}, \widehat{B}_{\mu\nu}, \widehat{\chi}_a)$,
- (S07.) Vector Supermultiplet : (A_{μ}, λ_b, d) ,
- (S08.) Axial Vector Supermultiplet : $(U_{\mu}, \hat{\lambda}_{b}, \hat{d})$,
- (S09.) Hodge Dual Vector Supermultiplet : $(\tilde{A}_{\mu}, \tilde{\lambda}_{b}, \tilde{d}_{\mu\nu\rho})$,
- (S10.) Hodge Dual Axial Vector Supermultiplet : $(\check{U}_{\mu}, \check{\lambda}_{b}, \check{d}_{\mu\nu\rho})$.
- Hodge duality relates some of the supermultiplets.
- Parity duality relates some of the supermultiplets.