Genomics, Networks, and Computational Concepts for Polytopic SUSY Representation Theory

YANGRUI HU 2021 DEC 03

Brown Theoretical Physics Center yangrui hu@brown.edu

OUTLINE

- A forty-year-old Problem
- The Ectoplasmic Conjecture
- Aynkrafields, Adynkra Digital Analysis (ADA) Scans, and 11D Supergravity Surprise
- SUSY Holography Conjecture
- Conclusions \& Outlook

A 40-YEAR-OLD PROBLEM

"Our hnowledge can only be finite, while our ignorance must necessarily be infinite."

- Karl Popper

A 40-YEAR-OLD PROBLEM: 11D SUPERFIELDS

- 1974: first 4D superfield written down [Salam, Strathdee, 1974]
- 1978: first 11D on-shell supergravity [Cremmer, Julia, Scherk, 1978]
- Irreducible off-shell formulation for the ten and eleven dimensional supergravity multiplet? Reducible one?
- 2020: 11D Superfield!! [Gates, YH, Mak, JHEP 09 089(2020)]

1: LieART [Feger, Kephart, 2012], SUSYno [Fonseca, 2011]

LINEARIZED NORDSTRÖM SUGRA

- [Gates, YH, Jiang, Mak, JHEP 1907 (2019) 063]: In Nordström theory, only non-conformal spin-0 part of graviton and nonconformal spin-1/2 part of gravitino show up

$$
\begin{aligned}
& \mathrm{E}_{\alpha}=\mathrm{D}_{\alpha}+\frac{1}{2} \Psi \mathrm{D}_{\alpha}, \\
& \mathrm{E}_{\underline{a}}=\partial_{\underline{a}}+\Psi \partial_{\underline{a}}-i \frac{2}{5}\left(\sigma_{\underline{a}}\right)^{\alpha \beta}\left(\mathrm{D}_{\alpha} \Psi\right) \mathrm{D}_{\beta}
\end{aligned}
$$

$$
\mathrm{E}_{\underline{a}}|=[1+\Psi]| \delta_{\underline{\underline{\underline{m}}}} \underline{\underline{m}}_{\underline{m}}+\left[-i \frac{2}{5}\left(\sigma_{\underline{a}}\right)^{\alpha \beta}\left(\mathrm{D}_{\alpha} \Psi\right)\right]\left|\mathrm{D}_{\beta} \quad \mathrm{E}_{\underline{a}}\right|=\mathrm{e}_{\underline{\underline{a}}} \partial_{\underline{m}}+\tilde{\psi}_{\underline{a}}^{\beta} \mathrm{D}_{\beta}
$$

$$
\mathrm{e}_{\underline{\underline{a}}}{ }^{\underline{m}}=[1+\Psi]\left|\delta_{\underline{\underline{m}}}^{\underline{m}}, \quad \tilde{\psi}_{\underline{\underline{a}}}{ }^{\beta}=\left[-i \frac{2}{5}\left(\sigma_{\underline{a}}\right)^{\alpha \beta}\left(\mathrm{D}_{\alpha} \Psi\right)\right]\right|
$$

LINEARIZED NORDSTRÖM SUGRA

- All component fields of Nordström SG are obtained from spin-0 graviton, spin-1/2 gravitino, and all possible spinorial derivatives to the field strength $G_{\alpha \beta}$

$$
\begin{gathered}
T_{\alpha \underline{b}}^{\gamma}=-\frac{3}{10} \delta_{\alpha}^{\gamma}\left(\partial_{\underline{\underline{L}}} \Psi\right)+\frac{3}{10}\left(\sigma_{\underline{\underline{b}}}^{\underline{c}}\right)_{\alpha}^{\gamma}\left(\partial_{\underline{\underline{c}}} \Psi\right)+i \frac{1}{160}\left[-\left(\sigma^{[2]}\right)_{\alpha}^{\gamma}\left(\sigma_{\underline{b}[2]}\right)^{\beta \delta}+\frac{1}{3}\left(\sigma_{\underline{b}[3]}\right)_{\alpha}^{\gamma}\left(\sigma^{[3]}\right)^{\beta \delta}\right] G_{\beta \delta} \\
\left.R_{\alpha \beta} \underline{d e}=-i \frac{6}{5}\left(\sigma^{[\underline{d}}\right)_{\alpha \beta}\left(\partial^{e}\right] \Psi\right)-\frac{1}{80}\left[\frac{1}{3!}\left(\sigma^{\underline{d e}[3]}\right)_{\alpha \beta}\left(\sigma_{[3]}\right)^{\gamma \delta}+\left(\sigma^{\underline{a}}\right)_{\alpha \beta}\left(\sigma_{\underline{a}}^{\underline{d e}}\right)^{\gamma \delta}\right] G_{\gamma \delta} \\
G_{\alpha \beta}=\left(\left[\mathrm{D}_{\alpha}, \mathrm{D}_{\beta}\right] \Psi\right)
\end{gathered}
$$

SUPERSPACE

- D spacetime dimensional superspace: $\left(x^{\underline{a}}, \theta^{\alpha}\right)$, where $\underline{a}=0,1,2, \ldots, \mathrm{D}-1$ and $\alpha=1,2, \ldots, d . d$ is the number of real components of the spinors.
- Number of independent components in unconstrained scalar superfields is 2^{d}, where $n_{B}=n_{F}=2^{d-1}$

Spacetime Dimension	Lorentz Group	Type of Spinors	d
11	$\mathrm{SO}(1,10)$	Majorana	32
10	$\mathrm{SO}(1,9)$	Majorana-Weyl	16
9	$\mathrm{SO}(1,8)$	Pseudo-Majorana	16
8	$\mathrm{SO}(1,7)$	Pseudo-Majorana	16
7	$\mathrm{SO}(1,6)$	$\mathrm{SU}(2)$-Majorana	16
6	$\mathrm{SO}(1,5)$	$\mathrm{SU}(2)$-Majorana-Weyl	8
5	$\mathrm{SO}(1,4)$	$\mathrm{SU}(2)$-Majorana	8
4	$\mathrm{SO}(1,3)$	Majorana/Weyl	4

4D, $\mathcal{N}=1$ SCALAR SUPERFILED

- General θ-expansion of a scalar superfield in $4 \mathrm{D}, \mathcal{N}=1$ superspace

$$
\begin{aligned}
\mathcal{V}\left(x^{\underline{a}}, \theta^{\alpha}\right)= & v^{(0)}\left(x^{\underline{a}}\right)+\theta^{\alpha} v_{\alpha}^{(1)}\left(x^{\underline{a}}\right)+\theta^{\alpha} \theta^{\beta} v_{\alpha \beta}^{(2)}\left(x^{\underline{\underline{a}}}\right) \\
& +\theta^{\alpha} \theta^{\beta} \theta^{\gamma} v_{\alpha \beta \gamma}^{(3)}\left(x^{\underline{a}}\right)+\theta^{\alpha} \theta^{\beta} \theta^{\gamma} \theta^{\delta} v_{\alpha \beta \gamma \delta}^{(4)}\left(x^{\underline{a}}\right)
\end{aligned}
$$

- Construct Irreducible θ-monimials
- Level-0: no θ
- Level-1: $\{4\}=\theta^{\alpha}$
- Level-2: $\{1\}=\theta^{\alpha} \theta^{\beta} C_{\alpha \beta},\{4\}=\theta^{\alpha} \theta^{\beta} i\left(\gamma^{5} \gamma^{\underline{a}}\right)_{\alpha \beta},\{1\}=\theta^{\alpha} \theta^{\beta} i\left(\gamma^{5}\right)_{\alpha \beta}$
- Level-3: $\{4\}=\theta^{\alpha} \theta^{\beta} \theta^{\gamma} C_{\alpha \beta} C_{\gamma \delta}$
- Level-4: $\{1\}=\theta^{\alpha} \theta^{\beta} \theta^{\gamma} \theta^{\delta} C_{\alpha \beta} C_{\gamma \delta}$

$$
\begin{aligned}
\mathcal{V}\left(x^{\underline{a}}, \theta^{\alpha}\right)= & v^{(0)}\left(x^{\underline{a}}\right)+\theta^{\alpha} v_{\alpha}^{(1)}\left(x^{\underline{a}}\right)+\theta^{\alpha} \theta^{\beta}\left[C_{\alpha \beta} v_{1}^{(2)}\left(x^{\underline{a}}\right)+i\left(\gamma^{5}\right)_{\alpha \beta} v_{2}^{(2)}\left(x^{\underline{a}}\right)+i\left(\gamma^{5} \gamma^{\underline{b}}\right)_{\alpha \beta} v_{\underline{\underline{b}}}^{(2)}\left(x^{\underline{\underline{a}}}\right)\right] \\
& +\theta^{\alpha} \theta^{\beta} \theta^{\gamma} C_{\alpha \beta} C_{\gamma \delta} v^{(3) \delta}\left(x^{\underline{a}}\right)+\theta^{\alpha} \theta^{\beta} \theta^{\gamma} \theta^{\delta} C_{\alpha \beta} C_{\gamma \delta} v^{(4)}\left(x^{\underline{a}}\right) .
\end{aligned}
$$

4D, $\mathcal{N}=1$ ADINKRA

Level	Component fields	Irrep(s) in $\mathfrak{s o}(4)$
0	$f\left(x^{\underline{a}}\right)$	$\{1\}$
1	$\psi_{\alpha}\left(x^{\underline{a}}\right)$	$\{4\}$
2	$g\left(x^{\underline{a}}\right), h\left(x^{\underline{a}}\right), v_{\underline{b}}\left(x^{\underline{a}}\right)$	$\{1\},\{1\},\{4\}$
3	$\chi^{\delta}\left(x^{\underline{a}}\right)$	$\{4\}$
4	$N\left(x^{\underline{a}}\right)$	$\{1\}$

[Faux, Gates, 2005], [Doran, Faux, Gates, Hubsch, Iga, Landweber, 2008] "The use of symbols to connote ideas which defy simple verbalization is perhaps one of the oldest of human traditions. "

CHIRAL \& VECTOR SUPERMULTIPLETS

- Consider gauge conditions \& chiral condition
- How to carry out the process for a general representation of spacetime supersymmetry is unknown! (Motivation for the adinkra approach to the study of superfields)

THE 4,294,967,296 PROBLEM

- In 11D, we have 32 Grassmann coordinates

$$
\mathcal{V}(x, \theta)=v^{(0)}(x)+\sum_{n=1}^{32} v_{\alpha_{1} \ldots \alpha_{n}}^{(n)}(x) \theta^{\alpha_{1}} \cdots \theta^{\alpha_{n}}
$$

- $2^{32}=4,294,967,296$ total degrees of freedom
- Question: what irreducible representations of $\mathfrak{G o}(1,10)$ occur among the 4,294,967,296 degrees of freedom in the scalar superfield?
- Until 2020, the answer was an unresolved puzzle.

TRADITIONAL PATH \rightarrow THE 4,294,967,296 PROBLEM

- Start from constructing irreducible θ-monomials
- Quadratic:

$$
\begin{array}{ll}
\{1\} & C_{\alpha \beta} \theta^{\alpha} \theta^{\beta} \\
\{165\} & \left.()^{\text {abc }}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta} \\
\{330\} & \left(\gamma^{\text {abcd }}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta}
\end{array}
$$

- Cubic level: [] $]_{I R}$ means that a single γ-trace of the expression is by definition equal to zero.

$$
\begin{align*}
& \{5,280\} \quad\left[\left(\gamma^{a b c d}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta} \theta^{\gamma}\right]_{I R} \\
& \{3,520\} \quad\left[\left(\gamma^{a b c d}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta}\left(\gamma_{\underline{d}}\right)_{\gamma \delta} \theta^{\delta}\right]_{I R} \quad, \quad\left[\left(\gamma^{a b c}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta} \theta^{\gamma}\right]_{I R} \\
& \{1,408\} \quad\left[\left(\gamma^{a b c d}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta}\left(\gamma_{\underline{c d}}\right)_{\gamma \delta} \theta^{\delta}\right]_{I R} \quad, \quad\left[\left(\gamma^{a b c}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta}\left(\gamma_{\underline{c}}\right)_{\gamma \delta} \theta^{\delta}\right]_{I R} \\
& \{320\} \quad\left[\left(\gamma^{a b c d}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta}\left(\gamma_{b c d}\right)_{\gamma \delta} \theta^{\delta}\right]_{I R} \quad, \quad\left[\left(\gamma^{a b c}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta}\left(\gamma_{\text {bc }}\right)_{\gamma \delta} \theta^{\delta}\right]_{I R} \\
& \left(\gamma^{a b c d}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta}\left(\gamma_{a b c d}\right)_{\gamma \delta} \theta^{\delta} \quad, \quad\left(\gamma^{a b c}\right)_{\alpha \beta} \theta^{\alpha} \theta^{\beta}\left(\gamma_{a b c}\right)_{\gamma \delta} \theta^{\delta} \quad, \quad C_{\alpha \beta} \theta^{\alpha} \theta^{\beta} \theta^{\gamma}
\end{align*}
$$

$$
\frac{32 \times 31 \times 30}{3!}=\{4,960\}=\{32\} \oplus\{1,408\} \oplus\{3,520\}
$$

THE FIRST SIGN OF TROUBLE

- θ-monomials have multiple expressions
- You wouldn't know two versions of $\{320\}$ and $\{5,280\}$ are identically zero
- Explicit proof by using Fierz identities presented in Appendix D of [Gates, YH, Mak, JHEP 09 089(2020)]
- Even for gamma matrix multiplications, you can get multiple expressions. e.g.

$$
\begin{aligned}
& \gamma^{\underline{a b c}} \gamma_{\underline{d e f g \underline{h}}} \\
& =\frac{1}{5!4!2!} \delta_{[\underline{d}} \underline{\underline{a}}_{\underline{\underline{a}} \underline{f g} \underline{h}]}{ }^{\underline{b}][5]} \gamma_{[5]}-\frac{1}{3!} \epsilon^{\underline{a b c}} \underline{\underline{d e f} \underline{f g} \underline{h}}{ }^{[3]} \gamma_{[3]}+\frac{1}{12} \delta_{[\underline{d}}{ }^{[\underline{a}} \delta_{\underline{e}}^{\underline{b}} \gamma_{\underline{f g} \underline{h}]}{ }^{\underline{c}]}-\frac{1}{2} \delta_{[\underline{d}}{ }^{\underline{a}} \delta_{\underline{e}}{ }^{\underline{b}} \delta_{\underline{f}} \underline{c}_{\underline{c} \underline{g}]} \\
& \left.=\frac{1}{4!2!} \epsilon^{[4]} \underline{d e \underline{f g} \underline{h}}{ }^{[\underline{a b}} \gamma^{\underline{c}]}[4]-\frac{1}{3!} \epsilon^{\underline{a b c}} \underline{\underline{d e f g} \underline{\underline{h}}}{ }^{[3]} \gamma_{[3]}+\frac{1}{12} \delta_{[\underline{d}}{ }^{[\underline{a}} \delta_{\underline{e}}{ }^{\underline{b}} \gamma_{\underline{f g} \underline{h}}\right]^{c]}-\frac{1}{2} \delta_{[\underline{d}}{ }^{\underline{a}} \delta_{\underline{e}} \underline{b}^{\underline{b}} \delta_{\underline{f}}^{\underline{c}} \gamma_{\underline{g} \underline{h}]} \\
& =\frac{1}{4!4!} \epsilon^{[4] \underline{a b c}}\left[\underline{d e} \underline{f g} \gamma_{\underline{h}][4]}-\frac{1}{3!} \epsilon^{\underline{a b c}}{ }_{\underline{d e} \underline{f g} \underline{\underline{h}}}{ }^{[3]} \gamma_{[3]}+\frac{1}{12} \delta_{[\underline{d}} \underline{\underline{a}}^{[\underline{a}} \underline{\underline{e}}^{\underline{b}} \gamma_{\underline{f} \underline{g} \underline{h}]}{ }^{c}-\frac{1}{2} \delta_{[\underline{d}}{ }^{\underline{a}} \delta_{\underline{e}}^{\underline{b}} \delta_{\underline{f}} \underline{\underline{c}}_{\underline{c}} \gamma_{\underline{g} \underline{h}]}\right.
\end{aligned}
$$

THE ECTOPLASMIC CONJECTURE

"I am thinking about something much more important than bombs. I am thinking about computers""

THE ECTOPLASMIC CONJECTURE
 A REPRESENTATION OF SUPERSPACE

- The volume of the sphere represents the entirety of superspace and the equatorial plane represents the bosonic subspace

THE ECTOPLASMIC CONJECTURE
 A REPRESENTATION OF SUPERSPACE

- The volume of the sphere represents the entirety of superspace and the equatorial plane represents the bosonic subspace

BRANCHING RULES

11D SCALAR SUPERFIELD

- Definition: a Branching Rule is a relation between a representation of a Lie algebra \mathfrak{g} and representations of its Lie subalgebra \mathfrak{h}

$$
\mathfrak{s u}(32) \supset \mathfrak{s o}(1,10) \Rightarrow \mathcal{R}_{\mathfrak{s u}(32)} \xrightarrow{\text { branching rules }} \bigoplus \mathcal{R}_{\mathfrak{s o}(1,10)}
$$

- Intuition: θ-monomials equivalent to irreps of $\mathfrak{S u}(32)$

$$
\theta^{\alpha_{1}} \cdots \theta^{\alpha_{n}} \quad \Leftrightarrow \underbrace{\{32\} \wedge \ldots \wedge\{32\}}_{n \text { times }} \Leftrightarrow \begin{array}{|c|}
\hline 32 \\
\hline \\
\hline \begin{array}{c}
32 \\
-n+1 \\
\hline
\end{array} \\
\hline
\end{array}
$$

BRANCHING RULES
 PROJECTION MATRIX

- Branching rules are determined by a single projection matrix
- The projection matrix is fixed by the weight diagrams of a branching rule of them, where weight diagrams can be written down by Cartan matrix of \mathfrak{g} and Dynkin labels
- $\{32\}$ in $\mathfrak{S u}(32)=\{32\}$ in $\mathfrak{S o}(1,10)$ gives

$$
\boldsymbol{P}_{s u(32) \supset s o(1,10)}=\left(\begin{array}{lllllllllllllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 2 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 2 & 3 & 2 & 1 & 0 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 0 & 1 & 2 & 3 & 2 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

BRANCHING RULES

11D SCALAR SUPERFIELD

- Examples
$\left.\begin{array}{cccccc|}\{496\} & \longrightarrow & \{1\} & \oplus & \{165\} & \oplus\end{array}\right)\{330\}$
- Dictionary \& Graphical Rules in [Gates, YH, Mak, arXiv: 2006.03609] (Bosonic Young Tableaux \& Spinorial Young Tableaux introduced)

11D SCALAR SUPERFIELD RESULTS

11D SCALAR SUPERFIELD RESULTS

- Level-16: $(2)\{1\} \oplus\{11\} \oplus\{65\} \oplus(2)\{165\} \oplus\{275\} \oplus(2)\{330\} \oplus\{462\} \oplus(2)\{935\} \oplus(2)\{1,144\} \oplus$ $\{1,430\} \oplus\{2,717\} \oplus\{3,003\} \oplus(3)\{4,290\} \oplus(2)\{5,005\} \oplus\{7,007\} \oplus(3)\{7,128\} \oplus\{7,150\} \oplus$ $\{7,293\} \oplus(4)\{7,865\} \oplus\{11,583\} \oplus(4)\{15,400\} \oplus\{16,445\} \oplus(5)\{17,160\} \oplus(3)\{22,275\} \oplus$ (3) $\{23,595\} \oplus(2)\left\{23,5955^{\prime}\right\} \oplus(2)\{26,520\} \oplus(2)\{28,314\} \oplus(2)\{28,798\} \oplus(3)\{33,033\} \oplus$ $\{35,750\} \oplus(3)\{37,752\} \oplus\{47,190\} \oplus(3)\{57,915\} \oplus(3)\{58,344\} \oplus(3)\{70,070\} \oplus\{72,930\} \oplus$ (5) $\{78,650\} \oplus(2)\{81,510\} \oplus(4)\{85,085\} \oplus\{91,960\} \oplus(2)\{112,200\} \oplus(6)\{117,975\} \oplus$ (2) $\{137,445\} \oplus\{162,162\} \oplus(5)\{175,175\} \oplus(5)\{178,750\} \oplus(2)\{181,545\} \oplus(2)\{182,182\} \oplus$ (3) $\{188,760\} \oplus\{218,295\} \oplus\{235,950\} \oplus\left\{251,680^{\prime}\right\} \oplus(4)\{255,255\} \oplus(2)\{266,266\} \oplus$ (3) $\{268,125\} \oplus(7)\{289,575\} \oplus(4)\{333,234\} \oplus(4)\{382,239\} \oplus(2)\{386,750\} \oplus(2)\{448,305\} \oplus$ $\{490,490\} \oplus(6)\{503,965\} \oplus(3)\{525,525\} \oplus\{526,240\} \oplus\{616,616\} \oplus\{628,320\} \oplus$ $(2)\{650,650\} \oplus\{674,817\} \oplus\{715,715\} \oplus(2)\{722,358\} \oplus(6)\{802,230\} \oplus\{825,825\} \oplus$ (2) $\{862,125\} \oplus(6)\{868,725\} \oplus(4)\{875,160\} \oplus(2)\{948,090\} \oplus(4)\{984,555\} \oplus\{1,002,001\} \oplus$ (3) $\{1,100,385\} \oplus(2)\{1,115,400\} \oplus(2)\{1,123,122\} \oplus\{1,190,112\} \oplus\{1,191,190\} \oplus$ $\{1,245,090\} \oplus(4)\{1,274,130\} \oplus(5)\{1,310,309\} \oplus(2)\{1,412,840\} \oplus(5)\{1,519,375\} \oplus$ $\{1,533,675\} \oplus(4)\{1,673,672\} \oplus(2)\{1,718,496\} \oplus\{1,758,120\} \oplus(3)\{1,786,785\} \oplus$ $\{2,147,145\} \oplus(2)\{2,450,250\} \oplus(2)\{2,571,250\} \oplus\{2,598,960\} \oplus(3)\{2,743,125\} \oplus$ $\{2,858,856\} \oplus\{3,056,625\} \oplus\{3,083,080\} \oplus(4)\{3,128,697\} \oplus\{3,586,440\} \oplus(3)\{3,641,274\} \oplus$ $(2)\{3,792,360\} \oplus\{3,993,990\} \oplus\{4,332,042\} \oplus(4)\{4,506,040\} \oplus(2)\{4,708,704\} \oplus$ $\{4,781,920\} \oplus(6)\{5,214,495\} \oplus(2)\{5,214,495 '\} \oplus(2)\{5,651,360\} \oplus\{5,834,400\} \oplus$ $(2)\{6,276,270\} \oplus\{7,468,032\} \oplus(3)\{7,487,480\} \oplus(2)\{7,865,000\} \oplus(3)\{7,900,750\} \oplus$ $\{8,893,500\} \oplus\{9,845,550\} \oplus\left\{10,696,400^{\prime}\right\} \oplus\{10,830,105\} \oplus(2)\{11,981,970\} \oplus$ $\{12,972,960\} \oplus\{14,889,875\} \oplus\{17,606,160\} \oplus\{18,718,700\} \oplus(3)\{20,084,064\} \oplus$ $\{30,604,288\} \oplus\{31,082,480\}$

11D SCALAR SUPERFIELD RESULTS

- Level-17: $(2)\{32\} \oplus\{320\} \oplus(2)\{1,408\} \oplus\{1,760\} \oplus(3)\{3,520\} \oplus(2)\{4,224\} \oplus\{5,280\} \oplus$ (3) $\{7,040\} \oplus(3)\{10,240\} \oplus(2)\{22,880\} \oplus(3)\{24,960\} \oplus(6)\{28,512\} \oplus(3)\{36,960\} \oplus$ (4) $\{45,056\} \oplus(4)\{45,760\} \oplus\{64,064\} \oplus(6)\{91,520\} \oplus(3)\{128,128\} \oplus(6)\{134,784\} \oplus$ (3) $\{137,280\} \oplus(4)\{147,840\} \oplus(3)\{157,696\} \oplus(5)\{160,160\} \oplus\left\{160,160^{\prime}\right\} \oplus(3)\{183,040\} \oplus$ (6) $\{219,648\} \oplus\{251,680\} \oplus(3)\{264,000\} \oplus(3)\{274,560\} \oplus(3)\{292,864\} \oplus\{302,016\} \oplus$ $\{366,080\} \oplus(2)\{457,600\} \oplus(5)\{480,480\} \oplus(3)\{570,240\} \oplus(7)\{573,440\} \oplus(2)\{672,672\} \oplus$ (4) $\{798,720\} \oplus(5)\{896,896\} \oplus(4)\{901,120\} \oplus(8)\{1,034,880\} \oplus(3)\{1,140,480\} \oplus$ $\{1,171,456\} \oplus\{1,208,064\} \oplus(2)\{1,351,680\} \oplus(3)\{1,425,600\} \oplus(2)\{1,757,184\} \oplus$ (2) $\{1,921,920\} \oplus(3)\{1,936,000\} \oplus(3)\{2,013,440\} \oplus(2)\{2,038,400\} \oplus(5)\{2,114,112\} \oplus$ $(3)\{2,168,320\} \oplus(6)\{2,288,000\} \oplus\{2,342,912\} \oplus(3)\{2,358,720\} \oplus(2)\{2,402,400\} \oplus$ $\{2,446,080\} \oplus(3)\{3,706,560\} \oplus(2)\left\{3,706,560^{\prime}\right\} \oplus(3)\{3,794,560\} \oplus\{4,026,880\} \oplus$ (6) $\{4,212,000\} \oplus(2)\{5,720,000\} \oplus(2)\{5,857,280\} \oplus\{5,930,496\} \oplus(3)\{6,040,320\} \oplus$ $\{6,307,840\} \oplus\{6,864,000\} \oplus(3)\{7,208,960\} \oplus(3)\{8,781,696\} \oplus(3)\{9,123,840\} \oplus$ $\{10,570,560\} \oplus\left\{10,570,560^{\prime}\right\} \oplus(2)\{11,714,560\} \oplus\{11,927,552\} \oplus(2)\{12,390,400\} \oplus$ $(2)\{13,246,464\} \oplus(2)\{13,453,440\} \oplus\{15,375,360\} \oplus\{30,201,600\} \oplus\{33,116,160\} \oplus$ $\{33,554,432\}$

As of now and to the best of our knowledge, no other research group exists that has demonstrated such a capacity to identify the component field spectra in this detail in such systems

11D SCALAR SUPERFIELD RESULTS

Level \#	Component Field Count
0	1
1	1
2	3
3	3
4	8
5	9
6	19
7	23
8	49
9	55
10	99
11	106
12	173
13	171
14	247
15	225
16	296

- $N_{\text {Bosonic Fields }}=1,494$

$$
\ldots, h_{\mu \nu}, A_{\mu \nu \rho}, \ldots
$$

- $N_{\text {Fermionic Fields }}=1,186$

$$
\ldots, \psi_{\mu}^{\alpha}, \ldots
$$

BRANCHING RULES

SUMMARY TABLE

D	Branching Rules \rightarrow component fields	Branching Rules \rightarrow BYT
11	$A_{31} \supset B_{5}$	$A_{10} \supset B_{5}$
10	$A_{15} \supset D_{5}$	$A_{9} \supset D_{5}$
9	$A_{15} \supset B_{4}$	$A_{8} \supset B_{4}$
8	$A_{15} \supset D_{4}$	$A_{7} \supset D_{4}$
7	$A_{15} \supset B_{3}$	$A_{6} \supset B_{3}$
6	$A_{7} \supset D_{3}=A_{3}$	$A_{5} \supset D_{3}$
5	$A_{7} \supset B_{2} \cong C_{2}$	$A_{4} \supset B_{2}$
4	$A_{3} \supset D_{2} \cong A_{1} \times A_{1}$	$A_{3} \supset D_{2}$

- 10D: [Gates, YH, Mak, JHEP 02 176(2020)]
- 11D: [Gates, YH, Mak, JHEP 09 089(2020)]
- 4D - 9D: [Gates, YH, Mak, JHEP 09 202(2021)]
- Dictionary \& Graphical Rules: [Gates, YH, Mak, arXiv: 2006.03609]

ADYNKRAFIELDS, ADA SCANS, AND IID SUGRA SURPRISE

> "The best way to have a good idea is to have a lot of ideas"

- Linus Pauling

VISIBLE INSIGHTS FROM THE 10D N=1 SCALAR SF

VISIBLE INSIGHTS FROM THE 10D N=1 SCALAR SF

```
Level - \(0 \quad \Phi(x)\),
Level - \(1 \quad \Psi_{\alpha}(x)\),
Level - \(2 \quad \Phi_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1}\right\}}(x)\),
Level - \(3 \quad \Psi_{\left\{\underline{a}_{1} \underline{b}_{1}\right\}}{ }^{\alpha}(x)\),
Level - \(4 \quad \Phi_{\left\{\underline{a}_{1} \underline{b}_{1}, \underline{a}_{2} \underline{b}_{2}\right\}}(x) \quad, \quad \Phi_{\left\{\underline{a}_{2} \mid \underline{a}_{1} \underline{b}_{1} \underline{\underline{c}}_{1} \underline{d}_{1} \underline{e}_{1}\right\}}(x) \quad\),
Level - \(5 \quad \Psi_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} \underline{e}_{1}\right\}^{+}}{ }^{\alpha}(x) \quad, \quad \Psi_{\left\{\underline{a}_{2} \mid \underline{a}_{1} \underline{b}_{1}\right\}}{ }^{\alpha}(x) \quad\),
Level - \(\left.6 \quad \Phi_{\left\{\underline{a}_{2} \underline{b}_{2} \mid\right.} \mid \underline{\underline{1}}_{1} \underline{\underline{b}}_{1} \underline{c}_{1} \underline{d}_{1} \underline{e}_{1}\right\}+(x) \quad, \quad \Phi_{\left\{\underline{a}_{2}, \underline{a}_{3} \mid \underline{a}_{1} \underline{b}_{1} \underline{\underline{c}}_{1}\right\}}(x) \quad\),
Level - 7
    \(\Psi_{\left\{\underline{a}_{1},,_{2}, \underline{a}_{3}\right\} \alpha}(x)\)
\(\Psi_{\left\{\underline{a}_{2} \mid \underline{\underline{a}}_{1} \underline{b}_{1} \underline{c}_{1}\right\}}{ }^{\alpha}(x) \quad\),
Level - 8
\(\Phi_{\left\{\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}, \underline{a}_{4}\right\}}(x)\)
\(\Phi_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1}, \underline{a}_{2} \underline{b}_{2} \underline{c}_{2}\right\}}(x) \quad, \quad \Phi_{\left\{\underline{a}_{2}, \underline{a}_{3} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{c}_{1}\right\}}(x) \quad\),
Level - 9
\(\Psi_{\left\{\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}\right\}}{ }^{\alpha}(x)\)
\(\Psi_{\left\{\underline{a}_{2} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1}\right\} \alpha}(x)\),
Level - 10
\(\Phi_{\left\{\underline{a}_{2} \underline{b}_{2} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} \underline{e}_{1}\right\}^{-}}(x)\)
\(\widehat{\Phi}_{\left\{\underline{a}_{2}, \underline{\underline{a}}_{3} \mid \underline{\underline{a}}_{1} \underline{b}_{1} \underline{\underline{c}}_{1}\right\}}(x) \quad\),
Level - 11
\(\Psi_{\left\{\underline{\underline{a}}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} \underline{\underline{e}}_{1}\right\}^{-\alpha}}(x)\)
\(\Psi_{\left\{\underline{a}_{2} \mid \underline{a}_{1} \underline{b}_{1}\right\} \alpha}(x)\),
Level - 12
\(\widehat{\Phi}_{\left\{\underline{a}_{1} \underline{b}_{1}, a_{2} \underline{a}_{2}\right\}}(x) \quad\),
\(\Phi_{\left\{\underline{a}_{2} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} \underline{e}_{1}\right\}^{-}}(x) \quad\),
Level - \(13 \quad \Psi_{\left\{\underline{a}_{1} \underline{b}_{1}\right\} \alpha}(x)\),
Level - \(14 \quad \widehat{\Phi}_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1}\right\}}(x)\),
Level-15 \(\quad \Psi^{\alpha}(x)\),
Level - \(16 \quad \widehat{\Phi}(x)\).
```


ADYNKRAS

- 10D, N=1 Adynkra graph in Dynkin labels / Young Tableaux forms
- Can we define a new formalism in which θ monomials are replaced by Young Tableau?

THE 10D, N=1 SUPERFIELD GENOME

$$
\begin{aligned}
& \tilde{\mathcal{G}}=\bullet \oplus \ell\left[\begin{array}{ll}
16
\end{array} \frac{1}{2}(\ell)^{2} \exists_{\mathrm{IR}} \oplus \frac{1}{3!}(\ell)^{3} \frac{\overline{\square^{16}}}{} \oplus \frac{1}{4!}(\ell)^{4} \square_{\mathrm{IR}} \oplus \frac{1}{4!}(\ell)^{4} \exists_{\mathrm{IR},}\right. \\
& \text { IR,- } \\
& \oplus \frac{1}{5!}(\ell)^{5} \exists_{\text {IR,- }}^{\sqrt{16}} \oplus \frac{1}{5!}(\ell)^{5} \square{ }_{\text {IR }}^{\sqrt{16}} \oplus \frac{1}{6!}(\ell)^{6} \exists_{\text {IR,- }} \oplus \frac{1}{6!}(\mathrm{h})^{6} \square_{\mathrm{IR}}
\end{aligned}
$$

$\oplus \frac{1}{7!}(\ell)^{7} \square \square \prod_{16_{\mathrm{IR}}} \oplus \frac{1}{7!}(\ell)^{7} \square_{\mathrm{IR}}^{1{ }^{16}}$
$\oplus \frac{1}{8!}(\ell)^{8} \square \square_{\mathrm{IR}} \oplus \frac{1}{8!}(\ell)^{8} \bigoplus_{\mathrm{IR}} \oplus \frac{1}{8!}(\ell)^{8} \square_{\mathrm{IR}}$
$\oplus \frac{1}{9!}(\ell)^{9} \square \prod_{1 \overline{10}_{\text {IR }}} \oplus \frac{1}{9!}(\ell)^{9} \square_{\text {IR }}^{16}$
$\oplus \frac{1}{10!}(\ell)^{10} \exists_{\mathrm{IR},+} \oplus \frac{1}{10!}(\ell)^{10} \square_{\mathrm{IR}} \oplus \frac{1}{11!}(\ell)^{11} \exists_{\mathrm{IR},+}^{\square 16} \oplus \frac{1}{11!}(\ell)^{11} \square_{\mathrm{IR}}^{16}$
$\oplus \frac{1}{12!}(\ell)^{12} \square_{\mathbb{R}} \oplus \frac{1}{12!}(\ell)^{12} \uplus_{\mathbb{R},+}$
$\oplus \frac{1}{13!}(\ell)^{13} \square_{\text {1R }}^{16} \oplus \frac{1}{14!}(\ell)^{14} \exists_{\mathrm{IR}} \oplus \frac{1}{15!}(\ell)^{15}$ 国 $\oplus \frac{1}{16!}(\ell)^{16} \bullet$

10D, N=1 ADYNKRAFIELDS

$$
\begin{aligned}
& \widehat{\mathcal{G}}(x)=\Phi(x)+\ell \underline{16} \Psi_{\alpha}(x)+\frac{1}{2}(\ell)^{2} \square_{\mathrm{IR}} \Phi_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1}\right\}}(x)+\frac{1}{3!}(\ell)^{3} \square_{\mathrm{IR}}^{\overline{16}} \Psi_{\left\{\underline{a}_{1} b_{1}\right\}}^{\alpha}(x) \\
& +\frac{1}{4!}(\ell)^{4} \square_{\mathrm{IR}} \Phi_{\left\{\underline{a}_{1} \underline{b}_{1}, \underline{a}_{2} \underline{b}_{2}\right\}}(x)+\frac{1}{4!}(\ell)^{4} \square \Phi_{\left\{\underline{a}_{2} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} e_{1}\right\}} \square^{\square}(x) \\
& +\frac{1}{5!}(\ell)^{5} \Psi_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} \underline{e}_{1}\right\}^{+}}^{\alpha}(x)+\frac{1}{5!}(\ell)^{5} \square{ }_{\text {IR },-} \Psi_{\left\{\underline{a}_{2} \mid \underline{a}_{1} \underline{b}_{1}\right\}}(x) \\
& +\frac{1}{6!}(\ell)^{6} \begin{array}{l}
\square \\
\square
\end{array} \Phi_{\left\{\underline{a}_{2} \underline{b}_{2} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} \underline{e}_{1}\right\}^{+}}(x)+\frac{1}{6!}(\ell)^{6} \square \operatorname{IR},-^{\square} \quad \Phi_{\left\{\underline{a}_{2}, \underline{a}_{3} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1}\right\}}(x) \\
& +\frac{1}{7!}(\ell)^{7} \square \square 1_{16} \mathrm{IR} \Psi_{\left\{\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}\right\}}(x)+\frac{1}{7!}(\ell)^{7} \square{ }_{\operatorname{IR}}^{\square} \Psi_{\left\{\underline{a}_{2} \mid \underline{\underline{a}}_{1} \underline{b}_{1} \underline{c}_{1}\right\}}{ }^{\alpha}(x) \\
& +\frac{1}{8!}(\ell)^{8} \square \square \square_{\mathrm{IR}} \Phi_{\left\{\underline{a}_{1}, a_{2}, \underline{a}_{3}, \underline{a}_{4}\right\}}(x)+\frac{1}{8!}(\ell)^{8} \square_{\square \mathrm{IR}} \Phi_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1}, a_{2} \underline{\underline{b}}_{2} \underline{c}_{2}\right\}}(x) \\
& +\frac{1}{8!}(\ell)^{8} \square \Phi_{\left\{\underline{a}_{2}, \underline{a}_{3} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1}\right\}}(x)+\mathcal{O}\left((l)^{9}\right)
\end{aligned}
$$

FROM 10D, N=1 BACK TO 1D, N=16

- 10D, N=1 \rightarrow 1D, N=16
- We can take a limit:
- all of the field variables depend solely on a time-like coordinate T
- impose the condition that $(\ell)^{2}=1$

FROM 10D, N=1 BACK TO 1D,N=16

- It contains 32,768 bosons and 32,768 fermions.
- It also contains the information associated with the Lorentz representations (via the YT's) of the original 10D, $\mathrm{N}=1$ scalar
supermultiplet for which it is the hologram

$$
\begin{aligned}
& \widehat{\mathcal{G}}_{\text {Atank }}(\tau)= \\
& \left\{\Phi(\tau)+\frac{1}{2} \square_{\mathrm{IR}} \Phi_{\left\{\underline{a}_{1} b_{1} \underline{c}_{1}\right\}}(\tau)+\frac{1}{4!} \square_{\mathrm{IR}} \Phi_{\left\{\underline{a}_{1} \underline{b}_{1}, a_{2} \underline{b}_{2}\right\}}(\tau)+\frac{1}{4!} \varpi_{\mathrm{IR},-} \Phi_{\left\{\underline{a}_{2} \mid \underline{a}_{1} b_{1} \underline{c}_{1} \underline{\underline{d}}_{1} \underline{e}_{1}\right\}}+(\tau)\right. \\
& \left.+\frac{1}{6!} \square_{\text {IR,- }} \Phi_{\left\{\underline{a}_{2} \underline{b}_{2} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{c}_{1} \underline{\underline{q}}_{1}\right\}}\right\}^{+}(\tau)+\frac{1}{6!} \square \Phi_{\text {IR }} \Phi_{\left\{\underline{a}_{2}, \underline{\underline{a}}_{3}| |_{1} \underline{\underline{b}}_{1} \underline{c}_{1}\right\}}(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{10!} \square \widehat{\Phi}_{\left\{\left\{\underline{a}_{2}, \underline{a}_{3} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1}\right\}\right.}(\tau)+\frac{1}{10!} \square \Phi_{\left\{\underline{a}_{2} \underline{b}_{2} \mid \underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} \underline{e}_{1}\right\}}-(\tau) \\
& +\frac{1}{12!} \square_{\mathrm{IR}} \widehat{\Phi}_{\left\{\underline{a}_{1} \underline{b}_{1}, \underline{\underline{a}}_{2} \underline{b}_{2}\right\}}(\tau)+\frac{1}{12!} \square_{\square}^{\square} \quad \Phi_{\left\{\underline{a}_{2} \mid \underline{\underline{a}}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} \underline{\underline{L}}_{1}\right\}}-(\tau)+\frac{1}{14!} \square_{\mathrm{IR}} \widehat{\Phi}_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1}\right\}}(\tau) \\
& \left.+\frac{1}{16!} \widehat{\Phi}(\tau)\right\}+\ell\left\{{ }^{16} \Psi_{\alpha}(\tau)+\frac{1}{3!} \square_{\mathrm{IR}}^{16} \Psi_{\left\{\underline{a}_{1} \underline{b}_{1}\right\}}{ }^{\alpha}(\tau)+\frac{1}{5!} \Psi_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{d}_{1} \underline{Q}_{1}\right\}}\right\}^{\alpha}(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{9!} \square \square \overline{16}_{\mathrm{IR}} \Psi_{\left\{\underline{\underline{a}}_{1}, \underline{\underline{a}}_{2}, \underline{\underline{a}}_{3}\right\}}{ }^{\alpha}(\tau)+\frac{1}{9!} \square_{\mathrm{IR}}^{16} \Psi_{\left\{\underline{a}_{2} \mid \underline{\underline{a}}_{1} \underline{\underline{b}}_{1} \underline{c}_{1}\right\} \alpha}(\tau) \\
& +\frac{1}{11!} \Psi_{\left\{\underline{a}_{1} \underline{b}_{1} \underline{c}_{1} \underline{\underline{d}}_{1} \underline{e}_{1}\right\}} \varlimsup_{\mathrm{IR},+}^{16}(\tau)+\frac{1}{11!} \square_{\mathrm{IR}}^{16} \Psi_{\left\{\underline{a}_{2} \mid \underline{a}_{1} \underline{b}_{1}\right\} \alpha}(\tau)+\frac{1}{13!} \square_{\mathrm{IR}}^{16} \Psi_{\left\{\underline{a}_{1} \underline{b}_{1}\right\} \alpha}(\tau) \\
& \left.+\frac{1}{15!} \sqrt{16} \Psi^{\alpha}(\tau)\right\},
\end{aligned}
$$

ADYNKRA DIGITAL ANALYSIS SCANS

BREITENLOHNER APPROACH

- Idea: attach bosonic and spinor indices on the scalar superfield and look for components that occur onshell [Gates, YH, Mak, JHEP 03 (2021) 074]
- The first off-shell description of $4 \mathrm{D}, \mathcal{N}=1$ supergravity was carried out by Breitenlohner in 1977: start with the component fields of the $W Z$ gauge $4 \mathrm{D}, \mathcal{N}=1$ vector supermultiplet

$$
\begin{aligned}
\mathrm{D}_{\alpha} v_{\underline{a}} & =\left(\gamma_{\underline{a}}\right)_{\alpha}{ }^{\beta} \lambda_{\beta}, \\
\mathrm{D}_{\alpha} \lambda_{\beta} & =-i \frac{1}{4}\left(\left[\gamma^{\underline{\underline{a}}}, \gamma^{\underline{b}}\right)_{\alpha \beta}\left(\partial_{\underline{a}} v_{\underline{b}}-\partial_{\underline{\underline{b}}} v_{\underline{a}}\right)+\left(\gamma^{5}\right)_{\alpha \beta} \mathrm{d},\right. \\
\mathrm{D}_{\alpha} \mathrm{d} & =i\left(\gamma^{5} \gamma^{\underline{a}}\right)_{\alpha}{ }^{\beta} \partial_{\underline{\underline{a}}} \lambda_{\beta},
\end{aligned}
$$

- Do a series of replacements of the fields

$$
v_{\underline{a}} \rightarrow h_{\underline{\underline{a}} \underline{\underline{b}}} \quad, \quad \lambda_{\beta} \rightarrow \psi_{\underline{\underline{b}} \beta} \quad, \quad \mathrm{~d} \rightarrow A_{\underline{b}}
$$

11D SUPERGRAVITY SURPRISE PPOINCARE VIELBEIN \& GRAVITINO

- Decompositions of the inverse frame and gravitino fields in 11D yield

$$
\begin{aligned}
& e_{a}{ }^{\underline{m}}=\left\{h_{(\underline{a b})}+\eta_{a b} h+h_{[a b]}\right\} \eta^{b \underline{b m}} \\
& \{121\} \quad\{65\} \quad\{1\} \quad\{55\}
\end{aligned}
$$

- $h_{(a b)}$ is the conformal graviton, h is the trace, and $h_{[a b]}$ is the two form

$$
\begin{aligned}
& \tilde{\psi}_{\underline{\underline{a}}}{ }^{\alpha}=\psi_{\underline{a}}{ }^{\alpha}-\frac{1}{11}\left(\gamma_{\underline{a}}\right)^{\alpha \beta} \psi_{\beta} \\
& \{352\}\{320\} \quad\{32\}
\end{aligned}
$$

- $\psi_{a}{ }^{\alpha}$ is the conformal gravitino and ψ_{β} is the γ-trace

11D SUPERGRAVITY SURPRISE PREPOTENTIAL CANDIDATES

- Semi-prepotential candidate: $\mathcal{V}=\mathrm{D}^{\alpha} \mathcal{V}_{\alpha}$

Physical Component	Irrep	Level
graviton ${h_{\underline{a b}}}^{\text {gravitino } \overline{\psi_{\underline{a}}}} \mathrm{\{65} \mathrm{\}}, \mathrm{\{1} \mathrm{\}}$	16	
3-form $B_{[3]}$	$\{320\},\{32\}$	17
	$\{165\}$	16

- Prepotential candidate: \mathcal{V}_{α}
- Contains 2 -form at level-17 \Rightarrow Poincare vielbein

SUSY HOLOGRAPHY CONJECTURE

" Siwing is worthwhile if one can contribute in some small way to this endless chain of progress."

\author{

- Paul A.M. Dirac
}

SUSY HOLOGRAPHY CONJECTURE IDEA

- SUSY Holography Conjecture: reduce higher dimensional supersymmetric models to 1D, 1D models encode the structure of higher dimensional models.
- Key object: adinkra - a graphical representation of 1D, Nextended SUSY algebra [Faux, Gates, 2005]
- 1D N-extended Super-Poincaré (1/N) generated by
$\left\{Q_{I}, Q_{J}\right\}=2 i \delta_{I J} \partial_{\tau^{\prime}}\left[Q_{I}, \partial_{\tau}\right]=\left[\partial_{\tau}, \partial_{\tau}\right]=0$
- Off-shell supermultiplet:

$$
Q_{I} \phi_{A}(\tau)=c \partial_{\tau}^{\lambda} \psi_{B}(\tau),
$$

$A, B=1, \ldots, d ; I=1, \ldots, N ; c= \pm 1 ;$ and $\lambda=0,1$
$Q_{I} \psi_{B}(\tau)=\frac{i}{c} \partial_{\tau}^{1-\lambda} \phi_{A}(\tau)$,

DEFINITION OF THE ADINKRA

Action of Q_{I}	Adinkra	Action of Q_{I}	Adinkra
$Q_{I}\left[\begin{array}{c}\psi_{B} \\ \phi_{A}\end{array}\right]=\left[\begin{array}{c}i \dot{\phi}_{A} \\ \psi_{B}\end{array}\right]$	${ }_{1}{ }^{\text {a }}{ }_{\text {B }}$	$Q_{I}\left[\begin{array}{l}\psi_{B} \\ \phi_{A}\end{array}\right]=\left[\begin{array}{c}-i \dot{\phi}_{A} \\ -\psi_{B}\end{array}\right]$	
$Q_{I}\left[\begin{array}{l}\phi_{A} \\ \psi_{B}\end{array}\right]=\left[\begin{array}{c}i \dot{\psi}_{B} \\ \phi_{A}\end{array}\right]$	${ }_{1}{ }^{\text {A }}{ }_{B}$	$Q_{I}\left[\begin{array}{l}\phi_{A} \\ \psi_{B}\end{array}\right]=\left[\begin{array}{c}-i \dot{\psi}_{B} \\ -\phi_{A}\end{array}\right]$	${ }_{1}{ }^{\text {a }}$

[Doran, Iga, Kostiuk, Landweber, Mendez-Diez, 2013]

- Each white vertex = bosonic component field/its time derivative
- Each black vertex = fermionic component field/its time derivative
- Edges colored by color $I\left(Q_{I}\right)$
- Edge is oriented : white $->$ black if $\lambda=0$; black $->$ white if $\lambda=1$
- Edge is dashed if $c=-1$; solid if $c=1$

1D, N=4 EXAMPLE: 4D, N=1 CHIRAL

- SUSY transformation laws for 4D, N=1 Chiral supermultiplet:

$$
\begin{aligned}
& \mathrm{D}_{a} A=\psi_{a}, \quad \mathrm{D}_{a} B=i\left(\gamma^{5}\right)_{a}{ }^{b} \psi_{b}, \quad \mathrm{D}_{a} F=\left(\gamma^{\mu}\right)_{a}{ }^{b} \partial_{\mu} \psi_{b} \quad, \quad \mathrm{D}_{a} G=i\left(\gamma^{5} \gamma^{\mu}\right)_{a}{ }^{b} \partial_{\mu} \psi_{b}, \\
& \mathrm{D}_{a} \psi_{b}=i\left(\gamma^{\mu}\right)_{a b} \partial_{\mu} A-\left(\gamma^{5} \gamma^{\mu}\right)_{a b} \partial_{\mu} B-i C_{a b} F+\left(\gamma^{5}\right)_{a b} G
\end{aligned}
$$

- Restrict the functions only to be dependent on the t-coordinate \Rightarrow 4D, N=1 Chiral multiplet on the 0-Brane.

[Gates, YH, Stiffler, 2019, arXiv: 1904.01738]

GRAPHS AS NETWORKS

$$
\begin{aligned}
\left(L_{1}\right)_{i \hat{k}}= & \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right),\left(L_{2}\right)_{i \hat{k}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
\left(L_{3}\right)_{i \hat{k}} & =\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0
\end{array}\right),\left(L_{4}\right)_{i \hat{k}}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

- Adinkra (network) $\Leftrightarrow \mathrm{L} / \mathrm{R}$ adjacent matrices
- SUSY transformation laws encoded by valise adinkras can be described by $\quad \mathrm{D}_{\mathrm{I}} \Phi_{i}=i\left(\mathrm{~L}_{\mathrm{I}}\right)_{i k} \Psi_{\hat{k}}, \quad \mathrm{D}_{\mathrm{I}} \Psi_{\hat{k}}=i\left(\mathrm{R}_{\mathrm{I}}\right)_{\hat{k} i} \Phi_{i}, \quad \mathrm{R}_{\mathrm{I}}=\left(\mathrm{L}_{\mathrm{I}}\right)^{\mathrm{T}}$
- $N \mathrm{~L}_{\mathrm{I}}$ and $N \mathrm{R}_{\mathrm{I}}$ matrices satsify the so-called Garden Algebra $G R(d, N): \quad \mathrm{L}_{\mathrm{I}} \mathrm{R}_{\mathrm{J}}+\mathrm{L}_{\mathrm{J}} \mathrm{R}_{\mathrm{I}}=2 \delta_{\mathrm{IJ}} \mathrm{I}_{\mathrm{d}}, \quad \mathrm{R}_{\mathrm{I}} \mathrm{L}_{\mathrm{J}}+\mathrm{R}_{\mathrm{J}} \mathrm{L}_{\mathrm{I}}=2 \delta_{\mathrm{IJ}} \mathrm{I}_{\mathrm{d}}$

N=4: TOTAL \# \& CLASSIFICATIONS

- What's the total number of all possible $\mathrm{N}=4$ valise adinkras?
- signed permutations of colors and bosons from two quaternion seed adinkras $\left(L_{\mathrm{P}_{\mathrm{i}}}=\left(\mathrm{BC}_{4}\right)_{\mathrm{ik}}\left(\mathrm{BC}_{3}\right)_{\mathrm{IJ}}\left(\mathrm{L}_{\mathrm{J}}^{\text {seed }}\right)_{\mathrm{k} \hat{\mathrm{j}}}\right.$
- counting $=2 \times B C_{4}($ boson $) \times B C_{4}($ color $) /$ Isometries $=36,864$ [Gates, Iga, Kang, Korotkikh, Stiffler, 2019]
- Isometries: sign double counting [e.g. $(\overline{13})=-(\overline{24})] \times$ Kleinfour subgroup $\leftrightarrow\{2 \times 4=8\}$
- Classifications? Isomorphism-equivalence classes: [Gates, YH, Stiffler, 2019], [Gates, YH, Stiffler, 2020]

N=4: PERMUTOHEDRON

- What mathematical structure secretly contains information from higher dimensions?
- Toy models: visualizing S_{4} (permutohedron)

- Consider 4D, N=1 to 1D, N=4, a dissection of S_{4} is required

N=4: HOPPING OPERATORS

- Q: what operators connect all the states within the specified SUSY quartets? - "Hopping" Operators
- A: Klein-four subgroup ("Klein's Vierergruppe)

$$
\begin{aligned}
& \mathscr{H}_{H_{1}}=() \\
& \mathscr{H}_{\mathcal{F}}=(12)(34) \\
& \mathscr{S}_{S_{f}}=(23)(12)(34)(23) \\
& \mathscr{S}_{f}=(23)(12)(34)(23)(12)(34)
\end{aligned}
$$

[Cianciara, Gates, YH, Kirk, JHEP 05, 077(2021)]

NEXT STOP: $N=8$?

- $N=8: 4 D, N=2$ SUSY \& the 40,320 Nodes \& 141,120 Edges Of the "Omnitruncated 7-simplex"

Also called Hexipentisteriruncicantitruncated 7-simplex. Picture is obtained from Wikipedia

CONCLUSIONS \& OUTLOOK

"The most effective way to do it, is to do it."

\author{

- Amelia Earhart
}

CONCLUSIONS

- Our work substantially lowers the computational costs of determining how to embed a set of component fields within a Salam-Strathdee superfield with no additional constraints.
- These embeddings are constructed without information from an off-shell component formulation for the first time
- Our work leads to a formalism demonstrating a manefest linear realization of the Lorentz group
- A proposal to identify possible supergravity prepotential candidates was presented
- These newly developed techniques can also be applied to create unprecedented understanding of M-Theory and F-Theory as relates to their SG limits

OPEN QUESTIONS

- How to determine the complete sets of SUSY transformations for these fields?
- Part of the information is encoded in the adynkra graphs as discussed in [Gates, YH, Mak, arXiv: 2006.03609]
- Explicit SUSY covariant derivative operation to adynkrafields
- The Salam-Strathdee superfield superconformal gauge group of supergravity
- Starting point: a re-imaging of adynkrafield formulation of 4D, $\mathrm{N}=1$ supergravity

THANK YOU!!

"The object of pure Physics is the unfolding of the laws of the intelligible world, the object of pure Sachematics that of unfolding the laws of human intelligence."

10D IRREDUCIBLE BOSONIC YOUNG TABLEAUX

$$
\begin{array}{llrl}
\underline{a}_{1}\left|\underline{a}_{2}\right| & =\{55\} & \underline{\underline{a}}_{1} \mid \underline{a}_{2} & { }_{\mathrm{IR}} \\
& {[2,0,0,0,0]} & \tilde{h}_{\underline{a b}} & =h_{\underline{a b}}+\eta_{\underline{a b}} h \\
\{55\} & =\{54\} \oplus\{1\}
\end{array}
$$

$$
P_{\mathfrak{s u}(10) \supset \mathfrak{s o}(10)}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0
\end{array}\right)
$$

- Ordinary Young Tableaux in $S U(10):[a, b, c, d, e, f, g, h, i]$
- Define the corresponding bosonic irrep in $S O(10)$ has the Dynkin label as $[a, b, c, d, d+2 e]$:

$$
[a, b, c, d, d+2 e]=[a, b, c, d, e, 0,0,0,0] P_{\mathfrak{S u}(10) \supset \mathfrak{s o}(10)}^{T}
$$

DICTIONARY: IRREP \leftrightarrow FIELD VARIABLES

- Dynkin labels \leftrightarrow BYT

- BYT \leftrightarrow Index structures of field variables

IRREDUCIBLE CONDITIONS

- Branching Rules for $\mathfrak{G u}(10) \supset \mathfrak{S o}(10)$ tell us the irreducible conditions

$$
\begin{aligned}
& \Phi_{\left\{\underline{a}_{1}\right\}}: N / A \\
& \Phi_{\left\{\underline{a}_{1} \underline{a}_{2}\right\}}: \eta^{\underline{a}_{1} \underline{a}_{2}} \Phi_{\left\{\underline{a}_{1} \underline{a}_{2}\right\}}=0 \\
& \Phi_{\left\{\underline{a}_{1} \underline{a}_{2} \mid \underline{b}_{1}\right\}}: \eta^{\underline{a}_{1} \underline{a}_{2}} \Phi_{\left\{\underline{a}_{1} \underline{a}_{2} \mid \underline{b}_{1}\right\}}=0 \\
& \Phi_{\left\{\underline{a}_{1} \underline{a}_{2}\left|\underline{\underline{b}}_{1}\right| \underline{\underline{c}}_{1}\left|\underline{\underline{d}}_{1}\right| \underline{e}_{1}\right\}^{+}}: \eta^{\underline{a}_{1} \underline{a}_{2}} \Phi_{\left\{\underline{a}_{1} \underline{a}_{2}\left|\underline{\underline{b}}_{1}\right| \underline{\underline{a}}_{1}\left|\underline{d}_{1}\right| \underline{e}_{1}\right\}^{+}}=0 \\
& \text { self - dual condition } \\
& \Phi_{\left\{\underline{a}_{1} \underline{a}_{2}\left|\underline{\underline{b}}_{1}\right| \underline{c}_{1}\left|\underline{\underline{l}}_{1}\right| e_{1}\right\}^{-}}: \eta^{\underline{a}_{1} \underline{a}_{2}} \Phi_{\left\{\underline{a}_{1} \underline{a}_{2}\left|\underline{\underline{b}}_{1}\right| \underline{c}_{1}\left|\underline{d}_{1}\right| \underline{e}_{1}\right\}^{-}}=0 \\
& \text { anti - self - dual condition }
\end{aligned}
$$

- D dimension: $\mathfrak{H u}(\mathrm{D}) \supset \mathfrak{S v}(\mathrm{D})$

10D IRREDUCIBLE SPINORIAL YOUNG TABLEAUX

- Two spinor indices \rightarrow sigma matrix \rightarrow vector indices
- Irreducible SYT \leftarrow Irreducible BYT $\otimes\{16\}$ (or $\{\overline{16}\}$)

$$
\begin{aligned}
& \{10\} \otimes\{16\}=\square_{\mathrm{IR}} \otimes\{16\}=\{\overline{16}\} \oplus\{\overline{144}\} \\
& \{45\} \otimes\{16\}=\square_{\mathrm{IR}} \otimes\{16\}=\{16\} \oplus\{144\} \oplus\{560\}
\end{aligned}
$$

THE 4D, N=1 MINIMAL SUPERMULTIPLET ZOO

(S01.) Chiral Supermultiplet: $\left(A, B, \psi_{a}, F, G\right)$,
(S02.) Hodge - Dual \#1 Chiral Supermultiplet : $\left(\widehat{A}, \widehat{B}, \psi_{a}, \mathrm{f}_{\mu \nu \rho}, \widehat{G}\right)$,
(S03.) Hodge - Dual \#2 Chiral Supermultiplet : $\left(\widetilde{A}, \widetilde{B}, \psi_{a}, \widehat{F}, \mathrm{~g}_{\mu \nu \rho}\right)$,
(S04.) Hodge - Dual \#3 Chiral Supermultiplet : $\left(\check{A}, \check{B}, \psi_{a}, \check{\mathrm{f}}_{\mu \nu \rho}, \check{\mathrm{g}}_{\mu \nu \rho}\right)$,
(S05.) Tensor Supermultiplet : $\left(\varphi, B_{\mu \nu}, \chi_{a}\right)$,
(S06.) Axial - Tensor Supermultiplet : $\left(\widehat{\varphi}, \widehat{B}_{\mu \nu}, \widehat{\chi}_{a}\right)$,
(S07.) Vector Supermultiplet : $\left(A_{\mu}, \lambda_{b}, \mathrm{~d}\right)$,
(S08.) Axial - Vector Supermultiplet: $\left(U_{\mu}, \widehat{\lambda}_{b}, \widehat{\mathrm{~d}}\right)$,
(S09.) Hodge - Dual Vector Supermultiplet: $\left(\widetilde{A}_{\mu}, \widetilde{\lambda}_{b}, \widetilde{\mathrm{~d}}_{\mu \nu \rho}\right)$,
(S10.) Hodge - Dual Axial - Vector Supermultiplet : $\left(\breve{U}_{\mu}, \breve{\lambda}_{b}, \breve{\mathrm{~d}}_{\mu \nu \rho}\right)$.

- Hodge duality relates some of the supermultiplets.
- Parity duality relates some of the supermultiplets.

