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A 40-YEAR-OLD PROBLEM

M/@WWWMWW

— Karl Popper



A 40-YEAR-OLD PROBLEM: 11D SUPERFIELDS

Lie algebras & Mathematica'

1974 1978 ~ 40 years ~

1974: first 4D superfield written down [Salam, Strathdee, 1974]
1978: first 11D on-shell supergravity [Cremmer, Julia, Scherk, 1978]

Irreducible off-shell formulation for the ten and eleven dimensional
supergravity multiplet? Reducible one?

2020: 11D Superfield!! [Gates, YH, Mak, JHEP 09 089(2020)]

1: LieART [Feger, Kephart, 2012], SUSYno [Fonseca, 2011]
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LINEARIZED NORDSTROM SUGRA

[Gates, YH, Jiang, Mak, JHEP 1907 (2019) 063]: In Nordstrom
theory, only non-conformal spin-0 part of graviton and non-
conformal spin-1/2 part of gravitino show up

E, =D, +3UD, .
E, =0, + %0, —25( )P (Da¥)Dg




LINEARIZED NORDSTROM SUGRA

* All component fields of Nordstrom SG are obtained from spin-0
graviton, spin-1/2 gravitino, and all possible spinorial derivatives

to the field strength G4




SUPERSPACE

* D spacetime dimensional superspace: (x* , 6), where

a=0,12,..,.D—1landa=1,2,...,d. d is the number of real
components of the spinors.

* Number of independent components in unconstrained scalar
superfields is 2%, where np = n, = 24!

Spacetime Dimension | Lorentz Group Type of Spinors
11 SO(1,10) Majorana
10 Majorana-Weyl

Pseudo-Majorana

Pseudo-Majorana
SU(2)-Majorana
SU(2)-Majorana-Weyl
SU(2)-Majorana
Majorana/Weyl




AD, /" =1 SCALAR SUPERFILED

» General 0—expansion of a scalar supertfield in 4D, /" =1
superspace

V(z2,0%) =vO(22) + 62vW(z2) + 620° 'U((fg(xg)
+ 0°0°07 ) (%) + 0°0°970° v') (z9)

e Construct Irreducible 86— monimials

Level-0: no 6

Level-1: {4} = 0°

Lovel2: {1} = 0°0°Cup, {4} = 0°0%i(1*1)as, {1} = 0°0°i(")us
Level-3: {4} = 620P07C,s5C.s

Level-4: {1} = 60%0P076°C,5C.s

V(at,6%) = v (@®) + 0o (a®) + 6°0° [ Capol(0?) + i(1)as v (@%) + i(1"1)as v (@) |

+ 0%0°07CLpChs v (2%) + 6°6°076°Cr5C. 5v™ (z2)
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4D, /" = 1 ADINKRA

Component fields | Irrep(s) in so(4)
f(x%) {1}
Ya(2) {4}

), h(z®), v(z®) | {1}, {1}, {4}
X’ (%) {4}
N () {1}

[Faux, Gates, 2005], [Doran, Faux, Gates, Hubsch, Iga, Landweber, 2008]
“The use of symbols to connote ideas which defy simple verbalization is perhaps
one of the oldest of human traditions. “
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CHIRAL & VECTOR SUPERMULTIPLETS

» Consider gauge conditions
& chiral condition

How to carry out the
process for a general
representation of
spacetime supersymmetry
is unknown! (Motivation
for the adinkra approach

to the study of superfields) 5 A0

Vector Supermultiplet Hodge-dual variants of
the chiral supermultiplet




THE 4,294,967,296 PROBLEM

In 11D, we have 32 Grassmann coordinates

32
V(x,0) = vOu)+ 3 viTha, (x) 67 o
n=1

232 = 4.,294,967,296 total degrees of freedom

Question: what irreducible representations of $0(1,10) occur

among the 4,294,967,296 degrees of freedom in the scalar
superfield?

Until 2020, the answer was an unresolved puzzle.




TRADITIONAL PATH — THE 4,294,967,296 PROBLEM

 Start from constructing irreducible 6—monomials

* Quadratic: 1} %07

{165} (772) 5 6%6°
{330} (7%2t), 5 606°

« Cubic level: [ ], means that a single y-trace of the expression is
by definition equal to zero.

(5,280} |
{3,520}  [(»* c [(v*9)as 870707,
{1,408} [ (e ed)vs 0° o [(7*)ap 0707 (1)456° ] 1

{320}  [(y*= 7 (Yoed)ys 0° [ (*9)ap 070”7 (Yhe)vs 0° ]

{32} “as 0707 (Vabe o ()0 070" (Yabe)rs 0 Cap 0”6

32 651 X 30
3!

= {4960} = {32} 6 {1.408] & {5,520}
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THE FIRST SIGN OF TROUBLE

6—monomials have multiple expressions

You wouldn’t know two versions of {320} and {5,280} are
identically zero

« Explicit proof by using Fierz identities presented in Appendix D
of [Gates, YH, Mak, JHEP 09 089(2020)]

Even for gamma matrix multiplications, you can get multiple
expressions. e.g.

abe
VT Vdefgh

I ¢ [a bel 5
S0l “Eesgn)”

1 4 ab _ ¢ 1 abe
4!2|€[ ]_fqh[ R ][4] 31 6__fgh[ |

1 4|labe
4'4'€[ ]

3]

1 aoc 1 a C 1 a C
V5] — 37€% desan Vi3] + 15010 0V rgn? — 501d0e 6 s Vgn)

]- a C
Vi3] + 125[d 02 pgn — 5014020 Vgn

1 a ]- a C
— 376 g ron Mg + 55[4 452 o — 501a%020 FYgn)
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THE ECTOPLASMIC CONJECTURE
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THE ECTOPLASMIC CONJECTURE

A REPRESENTATION OF SUPERSPACE

(z, 6) superfields

Ectoplasm:
Topological
‘closeness’

Gates, “Ectoplasgn has no

topology: fhe
Omponent Prelude,” [arXiv: B709104]

* The volume of the sphere represents the entirety of superspace
and the equatorial plane represents the bosonic subspace

15



THE ECTOPLASMIC CONJECTURE

A REPRESENTATION OF SUPERSPACE

superfields

YH, Mak
2019
Component

S

* The volume of the sphere represents the entirety of superspace
and the equatorial plane represents the bosonic subspace
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BRANCHING RULES

11D SCALAR SUPERFIELD

* Definition: a Branching Rule is a relation between a representation
of a Lie algebra g and representations of its Lie subalgebra |

branching rules
su(32) O s0(1,10) = Reys) 222 D Reo(r,10)

* Intuition: 8-monomials equivalent to irreps of 31u(32)

& ;{32} AN {32}; &

~

n times




BRANCHING RULES
PROJECTION MATRIX

* Branching rules are determined by a single projection matrix

* The projection matrix is fixed by the weight diagrams of a
branching rule of them, where weight diagrams can be written

down by Cartan matrix of g and Dynkin labels

« {32} in 3u(32) = {32} in 80(1,10) gives

I)su(32)3so(l,10) =




BRANCHING RULES

11D SCALAR SUPERFIELD

» Examples

{496} 1} @ {165} & {330}

ik

® Pane] Plaped
—s {32} @ {1,408} @ {3,520}

|
|
[] IR |

— 1 IR
Va Viabla Vlabcla

 Dictionary & Graphical Rules in [Gates, YH, Mak, arXiv: 2006.03609]
(Bosonic Young Tableaux & Spinorial Young Tableaux introduced)
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11D SCALAR SUPERFIELD RESULTS

o Level-16: (2){1}@{11}®{65}®(2){165}d {275} ®(2){330} {462} B (2){935} P (2){1, 144} P
{1,430} @ {2,717} @ {3,003} @ (3){4,290} & (2){5, 005} ® {7,007} @ (3){7,128} & {7,150} &
{7,293} @ (4){7,865} @ {11,583} & (4){15, 400} @ {16,445} @ (5){17, 160} & (3){22,275} @
(3){23,595} @ (2){23,595'} @ (2){26,520} & (2){28,314} & (2){28,798} @ (3){33,033} @
(35,750} @ (3){37, 752} @ {47,190} @ (3){57, 915} @ (3){58, 344} @ (3){70, 070} @ {72,930} ®
(5){78,650} @ (2){81,510} & (4){85,085} & {91,960} & (2){112,200} @ (6){117,975} &
(2){137, 445} & {162, 162} & (5){175,175} @ (5){178, 750} & (2){181,545} & (2){182,182} &
(3){188,760} @ {218,295} @ {235,950} @ {251,680’} @ (4){255,255} @ (2){266,266} @
(3){268, 125} & (7){289,575} @ (4){333, 234} @ (4){382, 239} & (2) {386, 750} @ (2){448, 305} &
{490,490} @ (6){503,965} @ (3){525,525} @ {526,240} & {616,616} & {628,320} @
(2){650,650} @ {674,817} @ {715,715} @ (2){722,358} @ (6){802,230} @ {825,825} &
(2){862, 125} @ (6){868, 725} @ (4) {875,160} @ (2){948,090} & (4){984,555} & {1,002,001} &
(3){1,100,385} @ (2){1,115,400} @ (2){1,123,122} & {1,190,112} & {1,191,190} &
{1,245,090} @ (4){1,274,130} & (5){1,310,309} @ (2){1,412,840} & (5){1,519,375} @
{1,533,675} @ (4){1,673,672} @ (2){1,718,496} & {1,758,120} & (3){1,786,785} @
(2,147,145} @ (2){2,450,250} @ (2){2,571,250} @ {2,598,960} @ (3){2,743,125} @
{2,858, 856} {3,056, 625} d{3,083,080} & (4){3, 128,697} & {3, 586, 440} & (3){3, 641, 274} &
(2){3,792,360} @ {3,993,990} @ {4,332,042} @ (4){4,506,040} @ (2){4,708,704} @
(4,781,920} @ (6){5,214,495} @ (2){5,214,495'} @ (2){5,651,360} @ {5,834,400} @
(2){6,276,270} @ {7,468,032} @ (3){7,487,480} @ (2){7,865,000} & (3){7,900,750} &
(8,893,500} @ {9,845,550} @ {10,696,400'} & {10,830,105} & (2){11,981,970} @
(12,972,960} @ {14,889,875} @ {17,606,160} & {18,718,700} & (3){20,084,064} @
{30, 604, 288} @ {31,082, 480}

2]




11D SCALAR SUPERFIELD RESULTS

Qo

o Level 17: {32} ® {320} & (2){1,408} @ {1, 760} @ (3){3,520} @ (2){4,224} @ {5,280} ®
(3){7,040} & (3){10,240} & (2){22,880} & (3){24,960} & (6){28,512} @ (3){36,960} &
(4){45,056} @ (4){45,760} @ {64,064} & (6){91,520} @ (3){128,128} & (6){134,784} @
(3){137,280} @ (4){147,840} & (3){157,696} & (5){ 160,160} & {160,160’} & (3){183,040} &
(6){219,648} @ {251,680} & (3){264,000} & (3){274,560} & (3){292,864} & {302,016} @
{366,080} & (2){457,600} & (5){480,480} @ (3){570,240} & (7){573,440} & (2){672,672} &
(4){798,720} @ (5){896,896} @ (4){901,120} @ (8){1,034,880} & (3){1,140,480} @
{1,171,456} & {1,208,064} & (2){1,351,680} & (3){1,425,600} & (2){1,757,184} @
(2){1,921,920} & (3){1,936,000} & (3){2,013,440} & (2){2,038,400} & (5){2,114,112} @
(3){2,168,320} & (6){2,288,000} @ {2,342,912} & (3){2,358,720} & (2){2,402,400} @
{2,446,080} @ (3){3,706,560} & (2){3,706,560'} & (3){3,794,560} @ {4,026,880} @
(6){4,212,000} & (2){5,720,000} & (2){5,857,280} @ {5,930,496} & (3){6,040,320} &
{6,307,840} @& {6,864,000} & (3){7,208,960} & (3){8,781,696} @ (3){9,123,840} @
{10,570,560} & {10,570,560'} @ (2){11,714,560} & {11,927,552} @ (2){12,390,400} @
(2){13,246,464} @ (2){13,453,440} @ {15,375,360} & {30,201,600} & {33,116,160} @
{33, 554,432}

As of now and to the best of our knowledge, no other research group exists that has demonstrated
such a capacity to identify the component field spectra in this detail in such systems
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11D SCALAR SUPERFIELD RESULTS

Component Field Count
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BRANCHING RULES
SUMMARY TABLE

Branching Rules — component fields

Branching Rules — BYT

Az1 D Bs

Ao D Bs

A5 D Ds

A93D5

A15 D) B4

AgDB4

A5 D Dy

A7DD4

A5 D Bs

AGDBg

A7DD3=A3

A5DD3

A7 D By = ()

A4DBQ

Az D Dy = A1 X A

AgDDQ

10D: [Gates, YH, Mak, JHEP 02 176(2020)]
11D: [Gates, YH, Mak, JHEP 09 089(2020)]

4D - 9D: [Gates, YH, Mak, JHEP 09 202(2021)]

Dictionary & Graphical Rules: [Gates, YH, Mak, arXiv: 2006.03609]
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ADYNKRAFIELDS, ADA SCANS,
AND 11D SUGRA SURPRISE

“%WWWWC&W
W@mmw/oégfm/ed&”

— Linus Pauling



VISIBLE INSIGHTS FROM THE 10D N=1 SCALAR SF

Level — 0
Level — 1

-

Level — 2

[T TIEl

=)

Level — 3

Level — 4

Level — 5

Level — 6

Level — 7

Level — 8

Level — 9

Level — 10

Level — 12

Level — 13

Level — 14

=

Level — 15
Level — 16

® [ [T




VISIBLE INSIGHTS FROM THE 10D N=1 SCALAR SF

Level — 0

Level — 1

Level — 2

Level — 3

Level — 4

Level — 5 “ Wig,lan ()

Level — 6 Dlayaglabie }(T)

Level — 7 a1,a0,a: \I’{g2|glglgl}a($) ;

Level — 8 Do) 050503 (T) Pa,b,c; anb0e,} (T) :

Level — 9 Wiaa0a3 () WialabietalT)

Level — 10 y (b{QQ’QBlQlI—)lQl}(x) y

Level — 11 \ : WialabtalT)
Level =12 ®igp,a,(2) . Plaslarbieidie= ()
Level — 13 Wiabral®) |

Level — 14 6{91(_,191}(3:) :

Level — 15 U (x)

AN

Level — 16 d(z)




ADYNKRAS

* 10D, N=1 Adynkra graph in
Dynkin labels / Young
Tableaux forms

e Can we define a new

formalism in which 6-
monomials are replaced by
Young Tableau?




THE 10D, N=1 SUPERFIELD GENOME

az.@e@w)ﬂ o LH® o1 ! [£] = [0]

R

® 5 (0)° (Lo ® 5 (0)°

1
D 100 (5)10 -




10D, N=1 ADYNKRAFIELDS

IR,—

IR \P{QlaQQ,Q3}a (IC) +

R ¢{Ql ,QzaQ3:Q4} (fl;) +

(I){gg ,asla;bycid} (x)
IR

(I){Qz ,asla;bycy} (ZL’)
IR

IR

+ 0((1)°)

\11{92 |919191}a (iL')
IR

Q{lelgl 3929292} (x)




FROM 10D, N=1 BACK TO 1D, N=16

« 10D, N=1 — 1D, N=16
« We can take a limit:

* all of the field variables depend solely on a time-like coordinate
T

* impose the condition that ()Y =1




FROM 10D, N=1 BACK TO 1D,N=16

§Adnk(T ) =

* It contains 32,768 bosons {q,m%a bane() 1 L
and 32,768 fermions.

q>{§2|gll-’19141£1 }+ (T)

1
+ a ¢{22§2|9191214191}+ (T) + ﬁ

L 1IR,—

-2 [ ]
It also contains the AT T Semsman @) + 2 Swieamen@ + 50 Basaane ()
information associated o
with the Lorentz H e
representations (via the 1 g Vosuraser @ + 1] Fusea(?)

1
R @{ngl,gzgz}('r) + 12!

YT's) of the original 10D, :

L3 1 [ Tig " 1 N
N = 1 S Ca | a r + 16! q)(T) } +4 { \IIQ(T) + y _16I R ql{glgl} (T) + 5! : ‘Il{gll—)lglilgl}+ (T)
[16]

supermultiplet for which + A Y™ + AT T Yaasae®) + 5 Vindate”(0)

o IR

IR,—

[16]

it is the hologram + T ™) + ] Viadaaeal?)

16)

1 1 1 [ |l
+ 10 ‘I,{glélgldlgl}‘a(T) + 1] asla b, }a ' = Vig,b,3a(7)




ADYNKRA DIGITAL ANALYSIS SCANS

BREITENLOHNER APPROACH

* ldea: attach bosonic and spinor indices on the scalar superfield
and look for components that occur onshell [Gates, YH, Mak,
JHEP 03 (2021) 074]

e The first off-shell description of 4D, /' = 1 supergravity was
carried out by Breitenlohner in 1977: start with the component

fields of the WZ gauge 4D, /' = 1 vector supermultiplet

Dyv, = (Va_)aﬂ Ag

1 4
Dadsg = — i7([7*, 7 Das (Gavs — Fbva) + (V)asd |
D,d = i(757g)aﬁ VI

* Do a series of replacements of the fields

Y




11D SUPERGRAVITY SURPRISE
PPOINCARE VIELBEIN & GRAVITINO

* Decompositions of the inverse frame and gravitino fields in 11D yield

e;™ = {heb) + Nabh + hpap } 72"
(121} {65} {1} {55}

* N, is the conformal graviton, h is the trace, and 7, is the two
form

&ga =¢ga —
352} {3201 {32}

» y,” is the conformal gravitino and y; is the y-trace

34



11D SUPERGRAVITY SURPRISE
PREPOTENTIAL CANDIDATES

« Semi-prepotential candidate: v =DV,

Physical Component Irrep
graviton h,p {65}, {1}

gravitino 1,” {320}, {32}
3-form 8[3] {165}

e Prepotential candidate: V),

e Contains 2-form at level-17 = Poincare vielbein




SUSY HOLOGRAPHY
CONJECTURE

m@//awoémg[ﬁfw S

— Paul A.M. Dirac



SUSY HOLOGRAPHY CONJECTURE

IDEA

SUSY Holography Conjecture: reduce higher dimensional

supersymmetric models to 1D, 1D models encode the structure of
higher dimensional models.

Key object: adinkra — a graphical representation of 1D, N-
extended SUSY algebra [Faux, Gates, 2005]

1D N-extended Super-Poincaré (1IN) generated by
19y, 0y} = 2i00,, (O, 0] =10,0,] =0

Off-shell supermultiplet: Q1 a(r) = cdzp(r),
AB=1,..d; I=1,..N; c=%1;andA=0,1 Qrys(r)=-81"¢a(),




DEFINITION OF THE ADINKRA

Action of Qg Adinkra Action of Qg Adinkra
Y | _ [ ida | Y | [ —iga |
Qr

o4 | | —YB |

oA | | YB |

pa | [ iWp ] ¢4 | [ —ivB ]
QI_¢B_ b4 QI_¢B_ | _pa | Ii

[Doran, lga, Kostiuk, Landweber, Mendez-Diez, 2013]

Each white vertex = bosonic component field/its time derivative

Each black vertex = fermionic component field/its time derivative
Edges colored by color I (Q))

Edge is oriented : white -> black if 4 = 0; black -> white if 1 = 1

Edge is dashed if c = — 1; solid if c = 1




1D, N=4 EXAMPLE: 4D, N=1 CHIRAL

» SUSY transformation laws for 4D, N=1 Chiral supermultiplet:

DaA — ¢a ’ DaB — i(WS)abwb ) DaF — (VH)aba,uwb ) DaG — i(757u)abauwb )
Dathy = i(V")abOpuA — (7’ )apOuB — iCabF + (v°)abG -

 Restrict the functions only to be dependent on the t-coordinate =
4D, N=1 Chiral multiplet on the 0-Brane.

[Gates, YH, Stiffler, 2019, arXiv: 1904.01738]




GRAPHS AS NETWORKS

o = O O
oS O O
—

——

}—l
O O O = =

S

l o

—

N—

ol oo oo | o

o O

« Adinkra (network) < L/R adjacent matrices

» SUSY transformation laws encoded by valise adinkras can be
described by D@, =i(L);¥; , D¥;=iRD;®; , Ri= L)'

« NL;and N R; matrices satsify the so-called Garden Algebra
GR(d, N): LIRJ + LJRI == 25UI(1 5 RILJ e RJLI i 25HIC1
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N=4: TOTAL # & CLASSIFICATIONS

* What's the total number of all possible N=4 valise adinkras?

* signed permutations of colors and bosons from two quaternion
seed adinkras (LI)ij — (BC4)ik(BC3)U(L§eed)kj

» counting = 2 X BC,(boson) X BC,(color)/Isometries = 36,864
[Gates, Iga, Kang, Korotkikh, Stiffler, 2019]

» Isometries: sign double counting [e.g. (13) = — (24)] X Klein-
four subgroup < {2 X4 = 8}

* Classifications? Isomorphism-equivalence classes: [Gates, YH,
Stiffler, 2019], [Gates, YH, Stiffler, 2020]




N=4: PERMUTOHEDRON

« What mathematical structure secretly contains information from
higher dimensions?

» Toy models: visualizing S, (permutohedron)

Pictures cr. Wikipedia

e Consider 4D, N=1 to 1D, N=4, a dissection of §, is required

42




N=4: HOPPING OPERATORS

* Q: what operators connect all the
states within the specified SUSY
quartets? — "Hopping” Operators

* A: Klein-four subgroup (“Klein’s
Vierergruppe)

993 = (12)(34)
9; = (23)(12)(34)(23)
9% = (23)(12)(34)(23)(12)(34)

[Cianciara, Gates, YH, Kirk, JHEP 05, 077(2021)]
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NEXT STOP: N=82

 N=8:4D, N = 2 SUSY & the 40,320 Nodes & 141,120 Edges Of
the "Omnitruncated 7-simplex”

Also called Hexipentisteriruncicantitruncated 7-simplex. Picture is
obtained from Wikipedia

44




CONCLUSIONS &
OUTLOOK

“%m&éﬁmﬂwme/&
, s to-do-t.”

— Amelia Earhart



CONCLUSIONS

Our work substantially lowers the computational costs of determining how
to embed a set of component fields within a Salam-Strathdee superfield with
no additional constraints.

These embeddings are constructed without information from an off-shell
component formulation for the first time

Our work leads to a formalism demonstrating a manefest linear realization of
the Lorentz group

A proposal to identify possible supergravity prepotential candidates was
presented

These newly developed techniques can also be applied to create
unprecedented understanding of M-Theory and F-Theory as relates to their
SG limits




OPEN QUESTIONS

* How to determine the complete sets of SUSY transformations for
these fields?

 Part of the information is encoded in the adynkra graphs as
discussed in [Gates, YH, Mak, arXiv: 2006.03609]

 Explicit SUSY covariant derivative operation to adynkrafields

* The Salam-Strathdee superfield superconformal gauge group of
supergravity

» Starting point: a re-imaging of adynkrafield formulation of 4D,
N = 1 supergravity




THANK YOU!!

fumare atelligence.”

— J.J. Sylvester



10D IRREDUCIBLE BOSONIC YOUNG TABLEAUX

| = {55} ngle = {54} Ba_b — ha_b + na_bh
2,0,0,0,0 {05} = {54} @& {1}

» Consider the Projection Matrix for 31(10) D 30(10):
1 1
(o o\

Piy10)5s0(10) = | 0
0

X 0

¢ Ordinary Young Tableaux in SU(10): [a,b,c,d, e, f, g, h, i]

» Define the corresponding bosonic irrep in SO(10) has the Dynkin
label as [a, b, c,d,d + 2e]:
la b cd.d+2el- = lab:c .diel00] P§Tu(10):)§o(10)
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DICTIONARY: IRREP « FIELD VARIABLES

¢ Dynkin labels < BYT

[p,q,r,s,s+2t] with self-duality
[p,q,r,s+2t,s] with anti-self-duality

Y,
h

Zs
s

J

[0,0,0,0,2t] with self-duality
[p,0,0,0,0] + [0,9,0,0,00 + [0,0,r,0,0] + [0,0,0,s,s] +
[0,0,0,2t,0] with antiself-duality




IRREDUCIBLE CONDITIONS

« Branching Rules for 31u(10) D 80(10) tell us the irreducible
conditions

PR

Praja,}

(I){Qlﬁz by } :

anti — self — dual condition

* D dimension: 3u(D) D 30(D)




10D IRREDUCIBLE SPINORIAL YOUNG TABLEAUX

» Two spinor indices — sigma matrix — vector indices

e Irreducible SYT « Irreducible BYT ® {16} (or {16})

{10} ® {16} =L g ® {16} = {16} @ {144}

{45} ® {16} r® {16} = {16} & {144} & {560}

{16} =-® {16} |
{16} = - ©{16)

{560} =L g ® {16} —

{560} =1 g ® {16} —




THE 4D, N=1MINIMAL SUPERMULTIPLET ZOO

(SO1.
(S02.
(S03.
(S04.

Chiral Supermultiplet : (A, B, v,, F, G),
Hodge — Dual #1 Chiral Supermultiplet :
Hodge — Dual #2 Chiral Supermultiplet :
Hodge — Dual #3 Chiral Supermultiplet :

(S06.
(S07.
(S08.
(S09.
(S10.

Axial — Tensor Supermultiplet : (&, B wvs Xa) s

Vector Supermultiplet : (A, Ap, d),

Axial — Vector Supermultiplet : (U, \b, d)

Hodge — Dual Vector Supermultiplet : (A“, b, d,“,p)

Hodge — Dual Axial — Vector Supermultiplet : (U " M, d,“, o)

)
)
)
)
(S05.) Tensor Supermultiplet : (¢, By, Xa) ;
)
)
)
)
)

* Hodge duality relates some of the supermultiplets.

* Parity duality relates some of the supermultiplets.




