Celestial Quantum Error Correction:

From Non-commutative Geometry to Celestial CFT

Yangrui Hu Feb 06 2024 @Simons Foundation Seminars on Celestial Holography

Based on 2312.16298 & wip with Alfredo Guevara

The Question

The connection between quantum information and holography has been studied extensively, primarily through the AdS/CFT correspondence.

Can we extend analogous concepts to the celestial holography?

Prelude: Geometry & Entanglement

AdS/CFT Correspondence

• Ryu-Takayanagi (RT) formula

 $S_A = \frac{\text{area of } \gamma_A}{4G}$

[Ryu, Takayanagi, '06]

Condensed Matter Physics

- Tensor Networks: represent quantum many-body states
- Different types of tensor network states generate different geometries

Prelude: holographic code

- Lesson learned from Swingle [Swingle, '09]: some physics of AdS/CFT can be modeled by a MERA-like tensor network!
- [Almheiri, Dong, Harlow, '14] argued: the emergence of bulk locality in AdS/CFT can be characterized in terms of quantum error-correcting codes
- [Pastawski, Yoshida, Harlow, Preskill, '15] proposed such a toy model based on a tensor network construction of QECC

$$V: \mathcal{H}_{bulk} \to \mathcal{H}_{boundary}$$
, $|V|\psi$

 $|\psi\rangle| \approx ||\psi\rangle|$

How about flat holography? (Celestial)

- BMS symmetry spontaneous breaking: vacuum degeneracy
- IR divergence, Soft graviton & Goldstone modes

• $w_{1+\infty}$ hierarchy of soft currents

What we can do?

AdS/CFT Correspondence

Geometry & Entanglement

MERA-like Tensor Network

Celestial Holography: $w_{1+\infty}$ hierarchy of soft currents & its realization in twistor space

Algebraic structure & Symmetries

Gottesman-Kitaev-Preskill Code

[Gottesman, Kitaev, Preskill, '00]

What we can do?

To unfold the implications of error correction in celestial holography, we would like to

- Understand the algebraic structure of GKP vs noncommutative geometry
- Guided by symmetries, construct a toy model of celestial CFT from QECC
- Show how the IR data is factored out whereas the hard data is protected

Algebraic structure

From Fuzzy Spacetimes to Qubits

From Qubits to Qunits

Celestial CFT from Quantum Error Correction

Outline

Toy model with finite d.o.f.

"n": N-dimensional Hilbert space

Emerge as $N \to \infty$

From Fuzzy Spacetimes to Qubits

From Qubits to Qunits

Celestial CFT from Quantum Error Correction

Outline

Toy model with finite d.o.f.

Noncommutative Klein Space

• Consider $\{x_i\}$ in (2,2) signature $\mathbb{K}^{2,2}$

$$ds^2 = dz_1 d\bar{z}_1 + dz_2 d\bar{z}_2$$
 $z_1, \bar{z}_1 = x_1 \pm x_3$, $z_2, \bar{z}_2 = x_2 \pm x_4$

Radial distance

$$R^{2} = z_{1}\bar{z}_{1} + \bar{z}_{2}z_{2} = \det(x_{\alpha\dot{\alpha}}) , \quad x_{\alpha\dot{\alpha}} = \begin{pmatrix} z_{1} & -\bar{z}_{2} \\ z_{2} & \bar{z}_{1} \end{pmatrix}$$

• Lorentz group $SL(2,\mathbb{R}) \times SL(2,\mathbb{R})/\mathbb{Z}_2$ acts by

Real independent variables

Null infinity: $|R^2| \rightarrow \infty$

 $x_{\alpha\dot{\alpha}} \rightarrow \Lambda_{\alpha}{}^{\beta} x_{\beta\dot{\beta}} \tilde{\Lambda}^{\dot{\beta}}{}_{\dot{\alpha}}$

Noncommutative Klein Space

- Noncommutative structure: promote x_i to Hermitian operators satisfying the Wick algebra
 - $[x_1, x_3] =$
 - \Rightarrow $[z_1, \overline{z}_1] =$
- Euclidean spacetime: $z_1, \bar{z}_1 = x_1 \pm ix_3$ are not Hermitian but conjugate to each other
 - x_1, x_3 play roles of X, P while z_1, \overline{z}_1 are like a, a^{\dagger}
- Klein spacetime: z_1, \bar{z}_1 are Hermtian and obtained by canonical transf from x_1, x_3

$$= [x_2, x_4] = \frac{i\tau}{2} \qquad \tau \text{ is a} \\ \text{central term} \\ = [z_2, \bar{z}_2] = -i\tau$$

The canonical symmetries contain the Lorentz group in (2,2) signature!

- introducing (in Euclidean signature)

$$\xi_i = R^{-1} z_i \, , \, \bar{\xi}_i = \bar{z}_i R^{-1}$$

Renormalized algebra

$$\left[\xi_i, \bar{\xi}_j\right] = -i\tilde{\tau}\,\delta_{ij}\,\cdot$$

• Asymptotically - expect large R^2 - null infty: $R^2 \rightarrow \infty$

Renormalization = Radial Direction

• The notion of holographic code emerges when we interpret τ as a renormalization scale

• Follows from noncommutative geometry: the noncommutative 3-sphere is constructed by

 τ is renormalized according to a radial scale

 $+ O(1/R^4)$, $\tilde{\tau} = \tau R^{-2}$

Suggests the existence of the code in AFS

• In flat space, twistor variables $(\lambda, \mu) \in \mathbb{RP}^3$ are defined projectively by

incidence relation: μ_{α}

• $\lambda^{\dot{\alpha}}$ can be parameterized by a homogeneous real coordinate z

 $\lambda^{\dot{\alpha}} = \left(\sin\frac{x^+}{2}, \cos\frac{x^+}{2}\right)$

• Key observation:

incidence relation $\rightarrow \mu_{\alpha}(z) = \sum_{\frac{1}{7}k+1/2}^{1/2} \frac{\mu_{\alpha}^{(k)}}{z^{k+1/2}}$

 $x^+ = \phi - \psi$ and (ϕ, ψ) are coordinates of the celestial torus

Twistor Embedding

$$(\lambda) = x_{\alpha\dot{\alpha}} \lambda^{\dot{\alpha}}$$

$$\left(1,\frac{1}{z}\right) \sim \left(1,\frac{1}{z}\right)$$
, $z := \tan\frac{x^{+}}{2}$

Projective property $(\lambda,\mu) \sim t(\lambda,\mu), t \in \mathbb{R}$

The global sector of its mode expansion

We can interpret $\mu_{\alpha}(z)$ as a conformal field with chiral weight $h = \frac{1}{2}$

 $k = -1/2^{-2}$

•
$$\mu_{\alpha}(z) = \sum_{k=-1/2}^{1/2} \frac{\mu_{\alpha}^{(k)}}{z^{k+1/2}}$$
 $\mu_{+}^{+1/2} = -\bar{z}_{2}$, $\mu_{+}^{-1/2} = z_{1}$,
 $\mu_{-}^{+1/2} = \bar{z}_{1}$, $\mu_{-}^{-1/2} = z_{2}$.

Commutation relation:

• Another note: the \mathbb{RP}^1 *z*-line can be continued to a circle S^1

 $\tilde{\mu}_{\alpha}(x^{+})$ =

Twistor Embedding

$$\mu_{\beta}^{(j)} = i\tau \,\delta^{k+j} \,\epsilon_{\alpha\beta} \qquad k, j = \pm \frac{1}{2}$$

$$= \sum_{k=\pm 1/2} \tilde{\mu}_{\alpha}^{(k)} e^{ikx^+}$$

[Adamo, Mason, Sharma, '21], [Mason, '22]

From Fuzzy Spa

Commutation relation: $\left| \mu_{\alpha}^{(k)}, \mu_{\beta}^{(j)} \right| =$

- or equivalently $\mu_{\alpha}^{(k)} \rightarrow$ a pair of quantum harmonic oscillators
- Wick algebra only admits infinite-dimensional reps
- We need: finite-dimensional reps

acetimes to Qubits

$$\{\mu_{+}^{-1/2}, \mu_{-}^{+1/2}, \tau\} \text{ and } \{\mu_{+}^{+1/2}, \mu_{-}^{-1/2}, \tau\} \text{ are two repsonses}$$
Heisenberg algebra

• Recall: z and \bar{z} play the role of X and $P \rightarrow$ natural to quantize the system in z, \bar{z}

From Fuzzy Spacetimes to Qubits

• Step 1: "exponentiate" the alegbra: Heisenberg lie algebra \rightarrow Heisenberg lie group

$$g_{\pm}^{(k)} = e^{i\,\mu_{\pm}^{(k)}}$$
 satisfying

• Step 2: truncate the Hilbert space of a quantum harmonic oscillator \mapsto the one of a qubit

General statement: $\tau = 2\pi/N$ realizes U(N) for even N.

$$g_{+}^{(k)} g_{-}^{(-k)} = e^{i\tau} g_{-}^{(-k)}$$

Its rep acts on the Hilbert space

For each k, the Heisenberg group realizes U(2) if we take $\tau = \pi!$

 $g_{+}^{(k)}$

(Without loss of generality, we omit the k index and focus on one copy of them)

2-qubit System

- $g_{+}g_{-}$
- Generators of U(2) take the following form

$$G_{(a,b)} = e^{i(a\mu_{+}+b\mu_{-})} = (-1)^{ab/2} g_{+}^{a} g_{-}^{b} , \ (a,b) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}$$

They admit a two-dimensional rep

$$G_{(0,0)} = \mathbb{I}_2$$
 , $G_{(1,0)} = \sigma_1$, $G_{(0,1)} = \sigma_3$, $G_{(1,1)} = \sigma_2$

- Vector space = qubit Hilbert space

$$= - g_{-}g_{+}$$

Projection condition to define a qubit: $S_{\pm} = g_{\pm}^2 = 1$

Gottesman-Kitaev-Preskill Code

The embedding of qubits is essentially the well-known GKP code!

Encoding a qubit in an oscillator^{*}

Daniel Gottesman, $^{(1,2)\dagger}$ Alexei Kitaev, $^{(1)\ddagger}$ and John Preskill $^{(3)\$}$ $^{(1)}$ Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA ⁽²⁾ Computer Science Division, EECS, University of California, Berkeley, CA 94720, USA ⁽³⁾Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA

- that shift the values of the canonical variables

• Embed a finite-dimensional code space in the infinite-dimensional Hilbert space

• Exploit the noncommutative geometry of phase space to protect against errors

[Gottesman, Kitaev, Preskill, '00]

Gottesman-Kitaev-Preskill Code

Our Construction	Stabilizer (
exponential operators g_{\pm}	X,Z gate
g_{\pm}^2	stabilizer of t
qubit condition $g_{\pm}^2 = 1$	code subspace
bosonized operators $G_{(a,b)}$	logical (Pauli) o
vertex operators $e^{i(P_i z_i + \bar{P}_i \bar{z}_i)}$	errors

We will see how this explicitly works shortly..

Symmetries: continuous

• Symmetries for 2-oscillator system: linear transformations that preserve

$$\left[\mu_{\alpha}^{(k)}, \mu_{\beta}^{(j)}\right] = i\tau \,\delta^{k+j} \,\epsilon_{\alpha\beta} \qquad k, j = \pm \frac{1}{2}$$

$$ds^2 = \Omega_{ij} dz^i \odot d\overline{z}^j$$
, $\Sigma^0 = \Omega_{ij} dz^i \wedge d\overline{z}^j$

• $\mu_{\alpha}^{(k)}$: two types of indices \rightarrow two subgroups of Sp(4, \mathbb{R}) naturally follow

$$GL(2)_{\text{left}}: \ \mu_{\alpha}^{(k)} \mapsto (\Lambda_{\alpha})^{k}{}_{l} \mu_{\alpha}^{(l)} , \ \alpha = -, + ,$$

$$GL(2)_{\text{right}}: \ \mu_{\alpha}^{(k)} \mapsto (\Lambda^{(k)})_{\alpha}{}^{\beta} \mu_{\beta}^{(k)} , \ k = -\frac{1}{2}, \frac{1}{2}$$

 $Sp(4,\mathbb{R})$

• Kähler manifold: equipped not only the metric but also the symplectic structure

Symmetries: continuous

- This exercise tells us: α and k indice measured by

$$\bar{L}_{0} = \frac{1}{i\tau} \sum_{k=\pm 1/2} : \mu_{(+}^{(k)} \mu_{-}^{(-k)} :$$
$$L_{0} = \frac{1}{i\tau} \sum_{k=\pm 1/2} k : \mu_{+}^{(k)} \mu_{-}^{(-k)} :$$

- $GL(2)_{right}$ also preserve R^2
 - $GL(2)_{right} \subset Lorentz group$
 - $GL(2)_{right}$ preserve the Kähler structure

• This exercise tells us: α and k indices can be viewd as a $SL(2) \subset GL(2)$ weight

•

The normal ordering: μ_+ sits at the left of μ_-

Symmetries: discrete

Symmetries for 2-qubit system: must also preserve

$$g_{\pm} = e^{i\mu_{\pm}}$$
, $g_+g_- = e^{i\tau}g_-g_+$

also allows transformations such that $\tau \to (2m+1)\pi$, $m \in \mathbb{Z}$

 \Rightarrow the full discrete Lorentz transformations are symmetries of 2-qubit system

 $Sp(4,\mathbb{R}) \mapsto Sp(4,\mathbb{Z})$

Clifford Group

- Pauli operator acting on the Hilbert space: $G_{(a,b)} \otimes G_{(c,d)}$ (Pauli string)
- Clifford group: a subgroup of $U(2^2)$ which preserves this factorization
- Given the symplectic rep of the Pauli string, the Clifford group exactly describes the 2-qubit symmetry

$$G_{(a,b)} \;=\; e^{i(a\mu_++b\mu_-)} \;=\; (-1)^{ab/2} \,g^a_+ \,g^b_- \ , \ (a,b) \in \mathbb{Z}_2 \times \mathbb{Z}_2$$

symmetry for a 2-qubit system = Clifford group

Clifford group is finitely generated by three unitary gates

CNOT = Lorentz transformation

• Controlled-NOT (CNOT) gate: only one involves entangling the 2-qubit system

 $|a\rangle \otimes |$ 'Control'

• It flips the 2nd qubit only when the 1st one is 'activated'

 $-\overline{z}_2$ z_1 CNOT : $SL(2,\mathbb{R})_{right} \rightarrow SL(2,\mathbb{Z})_{right}$ of $\sqrt{z_2}$ \overline{z}_1 half of the Lorentz group

$$\begin{array}{ccc} b \rangle & \mapsto & |a\rangle \otimes |a+b\rangle \\ \uparrow & & \\$$

$$x_{\alpha\dot{\alpha}} = \begin{pmatrix} z_1 & -\bar{z}_2 \\ z_2 & \bar{z}_1 \end{pmatrix}$$

$$\xrightarrow{2} \mapsto \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 & -\bar{z}_2 \\ z_2 & \bar{z}_1 \end{pmatrix}$$

[Gottesman, Kitaev, Preskill, '00]

[Gottesman, '98]

Clifford Gates

- Hadamard or Fourier gate (F)

$$F: \begin{pmatrix} \mu_-\\ \mu_+ \end{pmatrix}$$

• Phase gate (P)

 $P : \begin{pmatrix} \mu_- \\ \mu_+ \end{pmatrix}$

• Non-kähler transformations: $SL(2,\mathbb{R}) \rightarrow SL(2,\mathbb{Z})$ — symmetry group of a single qubit

$$\mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \mu_{-} \\ \mu_{+} \end{pmatrix}$$

$$\mapsto \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mu_{-} \\ \mu_{+} \end{pmatrix}$$

[Gottesman, Kitaev, Preskill, '00]

[Gottesman, '98]

From Fuzzy Spacetimes to Qubits

From Qubits to Qunits

Celestial CFT from Quantum Error Correction

Outline

"n": N-dimensional

Hilbert space

From Qubits to Qunits

• Consider a field $\tilde{\mu}_{\alpha}(x^{+})$ valued in \mathbb{R}^{2} defined along the x^{+} cycle of Klein space.

$$\tilde{\mu}_{\alpha}(x^{+}) = \sum_{k=\pm 1/2} \tilde{\mu}_{\alpha}^{(k)} e^{ikx^{+}}$$

the series (assume even N)

$$\tilde{\mu}_{\alpha}(x^{+}) = \sum_{k \in \frac{1}{2} + \mathbb{Z}} \tilde{\mu}_{\alpha}^{(k)} e^{ikx^{+}} \to \sum_{k = -\frac{N-1}{2}}^{\frac{N-1}{2}} \tilde{\mu}_{\alpha}^{(k)} e^{ikx^{+}}$$

Modes $\tilde{\mu}_{\alpha}^{(k)}$ generalize the notion of z, \overline{z} coordinates

$$\rightarrow \quad \tilde{\mu}_{\alpha}(x^{+}) = \sum_{k \in \frac{1}{2} + \mathbb{Z}} \tilde{\mu}_{\alpha}^{(k)} e^{ikx^{+}}$$

• The emergence of N-dimensional Hilbert spaces (qunits) follows from truncating

From Qubits to Qunits

Truncation of the series can be realized by discretizing the torus

Define the Hilbert space by imposing $\left| \tilde{\mu}_{-}(x_{j}^{+}), \tilde{\mu}_{+}(x_{k}^{+}) \right| = i\tau \delta_{jk}$

$$\left[\hat{\tau} \right] = i\tilde{\tau}\,\delta^{j+k}$$
, $\tilde{\tau} = \frac{\tau}{N}$, $k, j = -\frac{N-1}{2}, ..., \frac{N-1}{2}$

2-qubit to N-qunit

$$\Rightarrow N \propto R^2$$

A single qunit GKP

$$\left[\mu_{\alpha},\mu_{\beta}\right] \;=\; i\,\tau\,\epsilon_{\alpha\beta} \;\;,\;\; \tau \;=\; \frac{2\pi}{N} \;\;,\;\; N\in 2\mathbb{Z}_{+}$$

Introduce the unitary operator

lacksquare

$$g_{\pm} := e^{\iota \mu_{\pm}}$$

Code subspace: $S_{\pm} = 1$ $X = X$

• Logical operators: g_{\pm} (analog of σ_1 and σ_3 in qubit) \checkmark what else?

 $G_{\lambda} =$ Most general operator:

$$g_+g_- = e^{i\tau}g_-g_+$$

 S_+ commute with g_+

and
$$S_{\pm} := g_{\pm}^N$$

simultaneously diagonalize S_{\pm} and one of g_{\pm} (Z) X X $X: |i\rangle \to |i+1\rangle$ $|N-1\rangle$

$$\exp i\left(\lambda^{+}\mu_{+} + \lambda^{-}\mu_{-}\right) = e^{i\left[\lambda\mu\right]}$$

A single qunit GKP

Displacement operators satisfy the Weyl algebra

 $G_{\lambda_1}G_{\lambda_2} = e^{i\frac{\tau}{2}[\lambda_1\lambda_2]}$

Logical operators:

 $[G_{\lambda}, S_{+}] = 0 =$

• Write a basis of \mathcal{H}_N

• Two different vacua: $|0\rangle_{\pm} = \sum g_{\pm}^{p} S_{\mp}^{q} |r\rangle$ which satisfy $g_{\pm} |0\rangle_{\pm} = |0\rangle_{\pm}$ $p,q\in\mathbb{Z}_N$

Construct the qunit by acting with

$$e^{2}G_{\lambda_{1}+\lambda_{2}} = e^{i\tau[\lambda_{1}\lambda_{2}]}G_{\lambda_{2}}G_{\lambda_{1}}$$

These operators form a closed algebra of dimension N^2

$$\Rightarrow (\lambda_+, \lambda_-) \in \mathbb{Z}_N \times \mathbb{Z}_N$$
 "Stabilizer lattice"

 $SL(2,\mathbb{R})$ symmetry is spontaneously broken

$$g_{\mp}: |n\rangle_{\pm} = g_{\mp}^{n}|0\rangle_{\pm}$$
, $n = 0, \dots, N-1$

• Go beyond the code subspace

$$S_{\pm} |\psi\rangle_s = e^{iNs_{\pm}} |\psi\rangle_s$$

• Errors acting on our code subspace

$$E_{\hat{\epsilon}} = \exp i \left(\hat{\epsilon}^+ \mu_+ + \hat{\epsilon}^- \mu_- \right)$$

• They can be measured by evaluating the stabilizer since they shift the s_+

$$s'_{\pm} =$$

Errors can be diagnosed when

Small errors \leftrightarrow soft spacetime fluctuations

$$s_{\pm} + \frac{2\pi}{N} \hat{\epsilon}_{\pm}$$
$$\ln |\Delta \hat{\epsilon}_{\pm}| < \frac{1}{2} \sqrt{\frac{2\pi}{N}}$$

N-qunit System

$$\left[\mu_{\alpha}^{(k)}, \mu_{\beta}^{(l)}\right] = i \tau \epsilon_{\alpha\beta} \delta^{k+l}$$

• Code is constructed in the same way:

$$g_{\pm}^{(k)} := e^{i\mu_{\pm}^{(k)}}$$

Logical operators

$$G_{\lambda_{-\frac{N-1}{2}}}^{(-\frac{N-1}{2})} \otimes \dots \otimes G_{\lambda_{\frac{N-1}{2}}}^{(\frac{N-1}{2})} = \exp\left(i \sum_{k=-\frac{N-1}{2}}^{\frac{N-1}{2}} [\lambda_k \mu^{(k)}]\right)$$

• Symmetry: $Sp(2N, \mathbb{R}) \rightarrow Sp(2N, \mathbb{Z})$

hints on the CFT side..

$$-\frac{N-1}{2} \leq k, l \leq \frac{N-1}{2}$$

•

and
$$S_{\pm}^{(k)} := (g_{\pm}^{(k)})^N$$

Continuous Symmetries

Two natural subgroups:

- only transform k index
- GL(N) $\mathcal{M} = \mathcal{M}_{kj} : \mu_{+}^{(k)} \mu_{-}^{(j)} :$
- Discrete (truncated) Virasoro:

$$L_m$$
 : $\mathcal{M}_{kj} = \delta_{k+j-m} \left(\frac{m}{2} - k\right)$

$$\left[L_m, \mu_\alpha^{(k)}\right] = -\left(\frac{m}{2} + k\right) \mu_\alpha^{(k+m)}$$

Truncated: only 2N - 3 of them act nontrivially

- \mathcal{V} left , \mathcal{V} right
 - only transform α index
 - N/2 copies of $GL(2)_{right}$ Kähler transformation

•
$$w_{\alpha\beta}^{(2)} = \sum_{k} : \mu_{(\alpha}^{(k)}\mu_{\beta)}^{(-k)} : \in \mathcal{V}_{right}$$

Generalize to nonlinear generators: W_{∞}

Left (non-Kähler): Virasoro Right (Kähler): a color $w_{1+\infty} \approx U(N \rightarrow \infty)$

From Fuzzy Spacetimes to Qubits

From Qubits to Qunits

Celestial CFT from Quantum Error Correction

Outline

Emerge as $N \to \infty$

Holographic code: from qunits to CCFT

• To construct a holographic code, we insert N-qunits along the x^+ -cycle

$$\left[\mu_{\alpha}^{(k)}, \mu_{\beta}^{(l)}\right] = i \tau \epsilon_{\alpha\beta} \delta^{k+1}$$

we allow τ to flow as $\tau \propto 1/N, 1/R^2$

- As approaching to the null bndy $R^2 \to \infty$ and $N \to \infty$, the N -qunit system is anticipated to flow towards a CFT as its continuum limit
- 1. Under large N limit, how CFT emerges Next:
 - 2. Physical meanings of the code: physical states, logical states, and errors

CFT from large N

- Consider $N \to \infty$

The truncated Virasoro becomes the actual Viraroro
$$L_m \rightarrow \sum_{k \in \mathbb{Z} + 1/2} \left(\frac{m}{2} - k\right) : \mu_+^{(k)} \mu_-^{(m-k)} :$$

The oscillator field $\mu_a(z) = \sum_{k=-\frac{N-1}{2}}^{\frac{N-1}{2}} \frac{\mu_a^{(k)}}{z^{k+\frac{1}{2}}} \rightarrow \mu_a(z) = \sum_{k \in \mathbb{Z} + 1/2} \frac{\mu_a^{(k)}}{z^{k+\frac{1}{2}}}$
Define $T(z) \equiv \sum_{m \in \mathbb{Z}} \frac{L_m}{z^{m+2}} = \frac{1}{2} e^{\alpha\beta} : \mu_a(z) \partial \mu_\beta(z) :$

which is the stress-energy tensor of a holomorphic CFT: the c = 1/2 free fermion!

• The internal U(N) becomes $Lw_{1+\infty}$

$$w_{\alpha_1\dots\alpha_p}^{(p)}(z) = : \mu_{(\alpha_1}(z)\cdots\mu_{\alpha_p)}(z) :$$

[Adamo, Mason, Sharma, '21A, '21B]

Supertranslation states

• Code states: under
$$N \to \infty$$

$$G_{\lambda_{\frac{N-1}{2}}}^{(-\frac{N-1}{2})} \otimes \ldots \otimes G_{\lambda_{\frac{N-1}{2}}}^{(\frac{N-1}{2})} \to \mathscr{G}_{\eta} = \exp\left(i\sum_{k} [\eta^{(k)}\mu^{(-k)}]\right) = \exp\left(i\oint \frac{dz}{2\pi i}[\eta(z)\mu(z)]\right)$$
with chiral weight $h = 1/2$

- Logical states satisfy $\eta_{\alpha}^{(k)} \in \mathbb{Z}$

• Supertranslation charge action:
$$[P_m]$$

Supertranslation charge carried by \mathcal{G}_η

Code states = supertranslation eigenstates (hard states)

protect hard states with quantized soft hair

$$_{\alpha}, \mathscr{G}_{\eta}] = i \eta_{\alpha}^{(m)} \mathscr{G}_{\eta}$$

Momentum eigenstates

•
$$\mathscr{G}_{\eta} = \exp\left(i\oint \frac{dz}{2\pi i}[\eta(z)\mu(z)]\right)$$
 states

- carry an infinite set of soft hair
- generalize the momentum states
- How to recover the usual momentum eigenstates?

$$\eta_{\alpha}(z) = \frac{\tilde{\lambda}_{\alpha}}{z - w}$$

$$\longrightarrow \qquad G_{\tilde{\lambda}}(w) = e^{i [\tilde{\lambda} \mu(w)]}$$

Errors

• Generic possible error acting on the code subspace takes the following form

$$E_{\kappa} = \exp\left(i \sum_{j} \left[\kappa^{(j)} \mu^{(-j)}\right]\right)$$

Valid error syndrome requires

$$|\kappa^{(j)\pm}| = \left| \oint \frac{dz}{2\pi i} z^{j-1/2} \kappa^{\pm}(z) \right| < \frac{1}{2} \sqrt{\frac{2\pi}{N}}$$

• Consider
$$\kappa_{\pm}(z) = \frac{\tilde{\lambda}_{\pm}}{z - w} \rightarrow \text{error } E_{\kappa}$$

QEC Condition:

$$|w|^{j-1/2} \omega \sqrt{N} < \sqrt{\frac{\pi}{2}}, |\bar{w}| < 1$$
.

= inserting a graviton

$$|w|^{j-1/2} \omega \sqrt{N} < \sqrt{\frac{\pi}{2}} , |\bar{w}| < 1$$
.

Tunable parameters:

- ω : the energy of the inserted graviton state
- (w, \bar{w}) : location of the insertion
- N: an (even) integer, the dimension of the logical subspace

One can trade off between these parameters

w as the pole

Energy ω and \bar{w} can be obtained by measuring the stabilizers

- introduce the machinery of QECC
- 2. The noncommutative structure $\mu_{\alpha}^{(k)}$,
- postulate the existence of a 'holographic code'

N-qunit at R_0

Summary

1. The quantization of the noncommutative geometry (Klein spacetimes) allows us to

$$\mu_{\beta}^{(l)} = i \tau \epsilon_{\alpha\beta} \delta^{k+l} \rightarrow \text{qunit as GKP code}$$

3. Given that the central term τ can be renormalized based on R^2 and N, we

 $V: \mathcal{H}_{bulk} \to \mathcal{H}_{boundary}$

Under $N \rightarrow \infty$, the N-qunit system flows to a CFT (a toy model of CCFT)

- IR Divergences?
- Spin Models for Celestial CFT?
- Entanglement entropy?

• • • • •

Outlook

Thank YOU!