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Celestial Quantum Error Correction:
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From Non-commutative Geometry to Celestial CFT
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The Question

The connection between quantum information and holography has been studied 
extensively, primarily through the AdS/CFT correspondence. 

Can we extend analogous concepts to the celestial holography? 

2



Prelude: Geometry & Entanglement
AdS/CFT Correspondence 

• Ryu-Takayanagi (RT) formula

3

Condensed Matter Physics 

• Tensor Networks: represent quantum many-body 
states 

• Different types of tensor network states generate 
different geometries

SA = area of γA

4G

[Evenbly, Vidal, ’11]
[Swingle, ’09]

[Ryu, Takayanagi, ’06]



Prelude: holographic code

• Lesson learned from Swingle [Swingle, ’09]: some physics of 
AdS/CFT can be modeled by a MERA-like tensor network! 

• [Almheiri, Dong, Harlow, ’14] argued: the emergence of bulk 
locality in AdS/CFT can be characterized in terms of quantum 
error-correcting codes 

• [Pastawski, Yoshida, Harlow, Preskill, ’15] proposed such a toy 
model based on a tensor network construction of QECC 
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V : ℋbulk → ℋboundary , |V |ψ⟩ | ≈ | |ψ⟩ |



How about flat holography?

• BMS symmetry spontaneous breaking: vacuum degeneracy  

• IR divergence, Soft graviton & Goldstone modes 

•  hierarchy of soft currentsw1+∞
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(Celestial)

[Himwich, Narayanan, Pate, Paul, Strominger, ’20]

[Strominger, ’21], [Himwich, Pate, Singh ’21]

[Guevara, Himwich, Pate, Strominger, ’21]

[He, Lysov, Mitra, Strominger, ’14]

Fourier transform Ward Identity

Vacuum Transition

[Strominger, 1703.05448]



What we can do?
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AdS/CFT Correspondence

MERA-like Tensor Network

Geometry & Entanglement

Celestial Holography:  
 hierarchy of soft currents 

& its realization in twistor space
w1+∞

Gottesman-Kitaev-Preskill Code

Algebraic structure & 
Symmetries

[Gottesman, Kitaev, Preskill, ’00]



What we can do?

To unfold the implications of error correction in celestial holography, we would like to 

• Understand the algebraic structure of GKP vs noncommutative geometry 

• Guided by symmetries, construct a toy model of celestial CFT from QECC 

• Show how the IR data is factored out whereas the hard data is protected

7

Algebraic structure SymmetriesCode
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From Fuzzy Spacetimes to Qubits

Outline

Celestial CFT from Quantum Error Correction

From Qubits to Qunits

Toy model with finite d.o.f. 

Emerge as N → ∞

“n”: -dimensional 
Hilbert space

N
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From Fuzzy Spacetimes to Qubits

Outline

Celestial CFT from Quantum Error Correction

From Qubits to Qunits

Toy model with finite d.o.f. 



Noncommutative Klein Space

• Consider  in  signature  

• Radial distance  

• Lorentz group  acts by 

{xi} (2,2) &2,2

SL(2,ℝ) × SL(2,ℝ)/ℤ2
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ds2 = dz1 dz̄1 + dz2 dz̄2 z1, z̄1 = x1 ± x3 , z2, z̄2 = x2 ± x4

Real independent 
variables

R2 = z1z̄1 + z̄2z2 = det(xα ·α) , xα ·α = (z1 −z̄2
z2 z̄1 )

xα ·α → Λα
β xβ ·β Λ̃

·β ·α

Null infinity: |R2 | → ∞



Noncommutative Klein Space

• Noncommutative structure: promote  to Hermitian operators satisfying the Wick 
algebra 

• Euclidean spacetime:  are not Hermitian but conjugate to each other 

•  play roles of  while  are like  

• Klein spacetime:  are Hermtian and obtained by canonical transf from 

xi

z1, z̄1 = x1 ± ix3

x1, x3 X, P z1, z̄1 a, a†

z1, z̄1 x1, x3
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[x1, x3] = [x2, x4] = iτ
2  is a 

central term
τ

⇒ [z1, z̄1] = [z2, z̄2] = − iτ

The canonical symmetries contain the Lorentz group in  signature!(2,2)



Renormalization = Radial Direction

• The notion of holographic code emerges when we interpret  as a renormalization scale 

• Follows from noncommutative geometry: the noncommutative 3-sphere is constructed by 
introducing (in Euclidean signature) 

• Renormalized algebra 

• Asymptotically 

τ

12 [Omori, Maeda, Miyazaki, Yoshioka, ’98]

ξi = R−1zi , ξ̄i = z̄iR−1

[ξi, ξ̄j] = − iτ̃ δij + O(1/R4) , τ̃ = τ R−2

 is renormalized 
according to a radial scale 

τ

- expect large  
- null infty: 

R2

R2 → ∞
Suggests the existence 

of the code in AFS



Twistor Embedding

• In flat space, twistor variables  are defined projectively by 

•  can be parameterized by a homogeneous real coordinate  

• Key observation:

(λ, μ) ∈ ℝℙ3

λ ·α z
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μα(λ) = xα ·α λ ·α
Projective property 
(λ, μ) ∼ t (λ, μ) , t ∈ ℝincidence relation:

μα(z) =
1/2

∑
k=−1/2

μ(k)
α

zk+1/2incidence relation →

λ ·α = (sin x+

2 , cos x+

2 ) ∼ (1, 1
z ) , z := tan x+

2

 and  
are coordinates of 
the celestial torus

x+ = ϕ − ψ (ϕ, ψ)

We can interpret  as a conformal field with chiral weight μα(z) h = 1
2

The global sector of its 
mode expansion 



•  

• Another note: the  -line can be continued to a circle 

μα(z) =
1/2

∑
k=−1/2

μ(k)
α

zk+1/2

ℝℙ1 z S1

Twistor Embedding
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μ+1/2
+ = − z̄2 , μ−1/2

+ = z1 ,
μ+1/2

− = z̄1 , μ−1/2
− = z2 .

Commutation relation: [μ(k)
α , μ( j)

β ] = iτ δk+j ϵαβ k, j = ± 1
2

μ̃α(x+) = ∑
k=±1/2

μ̃(k)
α eikx+

[Adamo, Mason, Sharma, ’21], [Mason, ’22]



From Fuzzy Spacetimes to Qubits

• Recall:  and  play the role of  and   natural to quantize the system in ,  
or equivalently   a pair of quantum harmonic oscillators 

• Wick algebra only admits infinite-dimensional reps 

• We need: finite-dimensional reps 

z z̄ X P → z z̄
μ(k)

α →

15

Commutation relation: [μ(k)
α , μ( j)

β ] = iτ δk+j ϵαβ k, j = ± 1
2

 and 
 are two reps of 

Heisenberg algebra

{μ−1/2
+ , μ+1/2

− , τ}
{μ+1/2

+ , μ−1/2
− , τ}



From Fuzzy Spacetimes to Qubits

• Step 1: “exponentiate” the alegbra: Heisenberg lie algebra  Heisenberg lie group 

• Step 2: truncate the Hilbert space of a quantum harmonic oscillator  the one of a qubit

→

↦
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g(k)
± = ei μ(k)

± satisfying g(k)
+ g(−k)

− = eiτ g(−k)
− g(k)

+ Its rep acts on the 
Hilbert space

For each ,  the Heisenberg group realizes  if we take !k U(2) τ = π

2-qubit System
General statement:  
realizes  for even .

τ = 2π/N
U(N ) N

[Hoppe, ’89]

(Without loss of generality, we omit the  index 
and focus on one copy of them)

k



2-qubit System

• Generators of  take the following form 

• They admit a two-dimensional rep 

• Vector space = qubit Hilbert space

U(2)

17

g+ g− = − g− g+

G(a,b) = ei(aμ++bμ−) = (−1)ab/2 ga
+ gb

− , (a, b) ∈ ℤ2 × ℤ2

G(0,0) = 12 , G(1,0) = σ1 , G(0,1) = σ3 , G(1,1) = σ2

Projection condition to define a qubit: S± = g2
± = 1



Gottesman-Kitaev-Preskill Code

• Embed a finite-dimensional code space in the infinite-dimensional Hilbert space   

• Exploit the noncommutative geometry of phase space to protect against errors 
that shift the values of the canonical variables

18 [Gottesman, Kitaev, Preskill, ’00]

The embedding of qubits is essentially the well-known GKP code!



Gottesman-Kitaev-Preskill Code
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Our Construction Stabilizer Code

exponential operators  X,Z gates

stabilizer of the code

qubit condition code subspace condition

bosonized operators logical (Pauli) operators

vertex operators errors

g±

g2
±

g2
± = 1

G(a,b)

ei(Pizi+P̄iz̄i)

, code subspaceℋlogical

ℋphysical

⋅⋅Logical operator

Error ⋅
⋅

Error correcting

We will see how this explicitly works shortly..



Symmetries: continuous

• Symmetries for 2-oscillator system: linear transformations that preserve 

• Kähler manifold: equipped not only the metric but also the symplectic structure 

• : two types of indices  two subgroups of  naturally followμ(k)
α → Sp(4,ℝ)

20

[μ(k)
α , μ( j)

β ] = iτ δk+j ϵαβ k, j = ± 1
2 Sp(4,ℝ)

ds2 = Ωij dzi ⊙ dz̄j , Σ0 = Ωij dzi ∧ dz̄j

GL(2)left : μ(k)
α ↦ (Λα)k

l μ(l)
α , α = − , + ,

GL(2)right : μ(k)
α ↦ (Λ(k))α

β μ(k)
β , k = − 1

2 , 1
2 .



Symmetries: continuous

• This exercise tells us:  and  indices can be viewd as a  weight 
measured by 

•  also preserve  

α k SL(2) ⊂ GL(2)

GL(2)right R2

21

L̄0 = 1
iτ ∑

k=±1/2
: μ(k)

(+ μ(−k)
−) : ,

L0 = 1
iτ ∑

k=±1/2
k : μ(k)

+ μ(−k)
− :

The normal ordering: 
 sits at the left of μ+ μ−

-   Lorentz group  
-  preserve the Kähler structure

GL(2)right ⊂
GL(2)right

Call  as Kähler transformationsGL(2)right

 as non-Kähler transformationsGL(2)left



Symmetries for 2-qubit system: must also preserve  

also allows transformations such that  

 the full discrete Lorentz transformations are symmetries of 2-qubit system

τ → (2m + 1)π , m ∈ ℤ

⇒

Symmetries: discrete

22

Sp(4,ℝ) ↦ Sp(4,ℤ)

g± = eiμ± , g+ g− = eiτ g− g+ , τ = π g2
± = 1&



Clifford Group

• Pauli operator acting on the Hilbert space:  (Pauli string) 

• Clifford group: a subgroup of  which preserves this factorization

G(a,b) ⊗ G(c,d)

U (22)

23

symmetry for a 2-qubit system = Clifford group 

G(a,b) = ei(aμ++bμ−) = (−1)ab/2 ga
+ gb

− , (a, b) ∈ ℤ2 × ℤ2

Given the symplectic rep of the Pauli string, the Clifford group exactly describes the 2-qubit symmetry

[Gottesman, Kitaev, Preskill, ’00]

Clifford group is finitely generated by three unitary gates



• Controlled-NOT (CNOT) gate: only one involves entangling the 2-qubit system 

• It flips the 2nd qubit only when the 1st one is ‘activated’ 

24 [Gottesman, Kitaev, Preskill, ’00]

[Gottesman, ’98]

|a⟩ ⊗ |b⟩ ↦ |a⟩ ⊗ |a + b⟩ |0⟩ = (1
0) , |1⟩ = (0

1)
‘Control’ ‘Target’

CNOT : (z1 −z̄2
z2 z̄1 ) ↦ (1 −1

0 1 ) (z1 −z̄2
z2 z̄1 )

xα ·α = (z1 −z̄2
z2 z̄1 )

 of 
half of the Lorentz group

SL(2,ℝ)right → SL(2,ℤ)right

CNOT = Lorentz transformation



Clifford Gates
• Non-kähler transformations:  — symmetry group of a single qubit 

• Hadamard or Fourier gate (F) 

• Phase gate (P)

SL(2,ℝ) → SL(2,ℤ)

25 [Gottesman, Kitaev, Preskill, ’00]

[Gottesman, ’98]

F : (μ−
μ+) ↦ (0 −1

1 0 ) (μ−
μ+)

P : (μ−
μ+) ↦ (1 −1

0 1 ) (μ−
μ+)
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From Fuzzy Spacetimes to Qubits

Outline

Celestial CFT from Quantum Error Correction

From Qubits to Qunits
“n”: -dimensional 

Hilbert space
N



From Qubits to Qunits

• Consider a field  valued in  defined along the  cycle of Klein space. 

• The emergence of -dimensional Hilbert spaces (qunits) follows from truncating 
the series (assume even )

μ̃α(x+) ℝ2 x+

N
N

27

μ̃α(x+) = ∑
k=±1/2

μ̃(k)
α eikx+ → μ̃α(x+) = ∑

k∈ 1
2 +ℤ

μ̃(k)
α eikx+

Modes  
generalize the notion of 

  coordinates

μ̃(k)
α

z, z̄

μ̃α(x+) = ∑
k∈ 1

2 +ℤ
μ̃(k)

α eikx+ →
N − 1

2

∑
k=− N − 1

2

μ̃(k)
α eikx+



From Qubits to Qunits

• Truncation of the series can be realized by discretizing the torus

28

x+
j = 2πj

N
j = 0,…, N − 1

Define the Hilbert space by imposing [μ̃−(x+
j ), μ̃+(x+

k )] = iτ δjk

[μ̃(k)
− , μ̃( j)

+ ] = iτ̃ δ j+k , τ̃ = τ
N

, k, j = − N − 1
2 , …, N − 1

2

2-qubit to -qunitN

Recall that     [ξi, ξ̄j] = − iτ̃ δij + O(1/R4) , τ̃ = τ
R2 ⇒ N ∝ R2

x+



A single qunit GKP

• Introduce the unitary operator  

• Code subspace:  

• Logical operators:  (analog of  and  in qubit)  what else?

S± = 1

g± σ1 σ3 ✓

29

[μα, μβ] = i τ ϵαβ , τ = 2π
N

, N ∈ 2ℤ+

g± := eiμ± and S± : = gN
±

g+g− = eiτg−g+

|0⟩ |1⟩ |2⟩ |N − 1⟩⋯
X X X X

 commute with  S± g±

Gλ = exp i (λ+μ+ + λ−μ−) = ei [λμ]Most general operator:

X : | i⟩ → | i + 1⟩
simultaneously diagonalize  and one of  ( )  S± g± Z



A single qunit GKP
• Displacement operators satisfy the Weyl algebra 

• Logical operators:  

• Write a basis of  

• Two different vacua:  which satisfy  

• Construct the qunit by acting with : 

ℋN

|0⟩± = ∑
p,q∈ℤN

gp
± Sq

∓ |r⟩ g± |0⟩± = |0⟩±

g∓ |n⟩± = gn
∓ |0⟩± , n = 0,…, N − 1

30

Gλ1
Gλ2

= ei τ
2 [λ1λ2]Gλ1+λ2

= eiτ[λ1λ2]Gλ2
Gλ1

[Gλ, S±] = 0 ⟹ (λ+, λ−) ∈ ℤN × ℤN

These operators form a closed 
algebra of dimension  N2

 symmetry is 
spontaneously broken
SL(2,ℝ)

“Stabilizer lattice”



A single qunit GKP
• Go beyond the code subspace  

• Errors acting on our code subspace 

• They can be measured by evaluating the stabilizer since they shift the s±

31

E ̂ϵ = exp i( ̂ϵ+μ+ + ̂ϵ−μ−)

S± |ψ⟩s = eiNs± |ψ⟩s s = (s+, s−) s± ∼ s± + 2π
N

s′ ± = s± + 2π
N

̂ϵ±

Errors can be diagnosed when  |Δ ̂ϵ± | < 1
2

2π
N

error syndrome 

Small errors  soft spacetime fluctuations↔



N-qunit System

• Code is constructed in the same way: 

•  Logical operators 

• Symmetry: Sp(2N, ℝ) → Sp(2N, ℤ)

32

[μ(k)
α , μ(l)

β ] = i τ ϵαβ δk+l , − N − 1
2 ≤ k, l ≤ N − 1

2

g(k)
± := eiμ(k)

± and S(k)
± : = (g(k)

± )N

G(− N − 1
2 )

λ− N − 1
2

⊗ … ⊗ G( N − 1
2 )

λN − 1
2

= exp i
N − 1

2

∑
k=− N − 1

2

[λkμ(k)]

hints on the CFT side..



Continuous Symmetries
Two natural subgroups:

33

• only transform  index 

•  

• Discrete (truncated) Virasoro:

k

GL(N) ℳ = ℳkj : μ(k)
+ μ( j)

− :
• only transform  index 

•  copies of  Kähler transformation 

•

α

N/2 GL(2)right

w(2)
αβ = ∑

k
: μ(k)

(α μ(−k)
β) : ∈ Dright

Dleft , Dright

Lm : ℳkj = δk+j−m ( m
2 − k)

[Lm, μ(k)
α ] = − ( m

2 + k) μ(k+m)
α

Check our paper for 
more interesting 
discussions on it!

Truncated: only  of them act nontrivially2N − 3

Generalize to nonlinear generators: w∞

Left (non-Kähler): Virasoro 

Right (Kähler): a color w1+∞ ≈ U(N → ∞)
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From Fuzzy Spacetimes to Qubits

Outline

Celestial CFT from Quantum Error Correction

From Qubits to Qunits

Emerge as N → ∞



• To construct a holographic code, we insert N-qunits along the 
-cycle 

• As approaching to the null bndy  and , the 
-qunit system is anticipated to flow towards a CFT as its 
continuum limit

x+

R2 → ∞ N → ∞ N

Holographic code: from qunits to CCFT

35

Next:  1. Under large  limit, how CFT emerges 

2. Physical meanings of the code: physical states, logical states, and errors

N

[μ(k)
α , μ(l)

β ] = i τ ϵαβ δk+l

we allow  to flow as τ τ ∝ 1/N, 1/R2



CFT from large N
• Consider  

• The truncated Virasoro becomes the actual Viraroro  

• The oscillator field   

• Define   

• The internal  becomes 

N → ∞

Lm → ∑
k∈ℤ+1/2

( m
2 − k) : μ(k)

+ μ(m−k)
− :

μα(z) =
N − 1

2

∑
k=− N − 1

2

μ(k)
α

zk+ 1
2

→ μα(z) = ∑
k∈ℤ+1/2

μ(k)
α

zk+ 1
2

T(z) ≡ ∑
m∈ℤ

Lm

zm+2 = 1
2 ϵαβ : μα(z) ∂ μβ(z) :

U(N) Lw1+∞

36

which is the stress-energy tensor of a holomorphic CFT: the  free fermion!c = 1/2

w(p)
α1…αp

(z) = : μ(α1
(z)⋯μαp)(z) :

 is 

equivalent to the OPE 
[μ(k)

α , μ(l)
β ] = i τ ϵαβ δk+l

μα(z1) μβ(z2) ∼ i τ
z12

ϵαβ

[Guevara, ’22]

[Adamo, Mason, Sharma, ’21A, ‘21B]



Supertranslation states

• Code states: under  

• Logical states satisfy  

• Supertranslation charge action: 

N → ∞

η(k)
α ∈ ℤ

[Pmα, Gη] = i η(m)
α Gη

37

G(− N − 1
2 )

λ− N − 1
2

⊗ … ⊗ G( N − 1
2 )

λN − 1
2

→ Gη = exp (i ∑
k

[η(k)μ(−k)]) = exp (i∮ dz
2πi

[η(z)μ(z)])

Code states = supertranslation eigenstates (hard states) 

protect hard states with quantized soft hair

with chiral weight  h = 1/2

Supertranslation charge carried by Gη

Mode expansion! 



Momentum eigenstates

•  states  

• carry an infinite set of soft hair 

• generalize the momentum states 

• How to recover the usual momentum eigenstates?

Gη = exp (i∮ dz
2πi

[η(z)μ(z)])

38

ηα(z) = λ̃α

z − w
Gλ̃(w) = ei [λ̃μ(w)]



Errors

• Generic possible error acting on the code subspace takes the following form 

• Valid error syndrome requires 

• Consider   error  = inserting a gravitonκ±(z) = λ̃±
z − w

→ Eκ

39

Eκ = exp i ∑
j

[κ( j)μ(−j)]

|κ( j)± | = ∮ dz
2πi

zj−1/2κ±(z) < 1
2

2π
N

|w |j−1/2 ω N < π
2 , | w̄ | < 1 .QEC Condition:



Error = Soft Insertion

Tunable parameters:  

• : the energy of the inserted graviton state 

• : location of the insertion 

• : an (even) integer, the dimension of the 
logical subspace 

One can trade off between these parameters

ω

(w, w̄)

N

40

|w |j−1/2 ω N < π
2 , | w̄ | < 1 .

Errors shift the wavefunction via 

 η±(z) ↦ η±(z) + λ̃±
z − w

|w | , | w̄ | < 1 , ω ≤ Λ , Λ = π
2N

Correctable errors = soft graviton 
insertions near the hard state

 as the polew

Energy  and  can be obtained by 
measuring the stabilizers

ω w̄

 , N ↑ Λ ↓



Summary
1. The quantization of the noncommutative geometry (Klein spacetimes) allows us to 

introduce the machinery of QECC 

2. The noncommutative structure   qunit as GKP code 

3. Given that the central term  can be renormalized based on  and , we 
postulate the existence of a ‘holographic code’  

[μ(k)
α , μ(l)

β ] = i τ ϵαβ δk+l →

τ R2 N

41

Under , the -qunit 
system flows to a CFT (a toy 
model of CCFT)

N → ∞ N-qunit at N R0

V : ℋbulk → ℋboundary



Outlook

• IR Divergences? 

• Spin Models for Celestial CFT? 

• Entanglement entropy? 

• …

42
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Thank YOU!


