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The Question

The connection between quantum information and holography has been studied
extensively, primarily through the AdS/CFT correspondence.

Can we extend analogous concepts to the celestial holography?



Prelude: Geometry & Entanglement

Cond d Matter Physi
AdS/CFT Correspondence Sligletisee: MErawelr =i elics

* Tensor Networks: represent quantum many-body

* Ryu-Takayanagi (RT) formula states

area of y,

S, = * Different types of tensor network states generate
A AG

different geometries

6 ' -

[Ryu, Takayanagi, '06] ‘ ”""‘,’,‘

[Swingle, '09]
[Evenbly, Vidal, "11]



Prelude: holographic

* Lesson learned from Swingle [Swingle, '09]: some physics of
AdS/CFT can be modeled by a MERA-like tensor network!

 [Almheiri, Dong, Harlow, '14] argued: the emergence of bulk
locality in AdS/CFT can be characterized in terms of quantum
error-correcting codes

» [Pastawski, Yoshida, Harlow, Preskill, '15] proposed such a toy
model based on a tensor network construction of QECC

V:%bulk — %boundary ’ ‘V‘WH ~ Hl/j)‘




How about flat holography?

(Celestial)

 BMS symmetry spontaneous breaking: vacuum degeneracy

* IR divergence, Soft graviton & Goldstone modes

Soft Factors

Fourier transform Ward Identity

Vacuum Transition

Memories - - Symmetries [He, Lysov, Mitra, Strominger, 14’

[Strominger, 1703.05448
* Wi, hierarchy of soft currents

[Himwich, Narayanan, Pate, Paul, Strominger, 20
[Guevara, Himwich, Pate, Strominger, '21]

[Strominger, '21], [Himwich, Pate, Singh '21]



time

CFT
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What we can do?

AdS/CFT Correspondence

i

Geometry & Entanglement

K

MERA-like Tensor Network

Celestial Holographuy:
Wii hierarchy of soft currents
& its realization in twistor space

K

Algebraic structure &
Symmetries

1

Gottesman-Kitaev-Preskill Code

[Gottesman, Kitaev, Preskill, '00]




What we can do?

To unfold the implications of error correction in celestial holography, we would like to
* Understand the algebraic structure of GKP vs noncommutative geometry
* (uided by symmetries, construct a toy model of celestial CFT from QECC

 Show how the IR data is factored out whereas the hard data is protected

Algebraic structure — Code — Symmetries



Outline

Toy model with finite d.o.f.

From Fuzzy Spacetimes to Qubits

“n”’: N-dimensional

Hilbert space

From Qubits to Qunits

Celestial CFT from Quantum Error Correction

Emerge as N - o©



Outline

Toy model with finite d.o.f.

From Fuzzy Spacetimes to Qubits
From Qubits to Qunits

Celestial CFT from Quantum Error Correction



Noncommutative Klein Space

Real independent

variables
* Consider {x;} in (2,2) signature K22

dSz — le dZI -+ dZ2d22 Zl, Zl — xl iX3 . Zz, Zz — x2 iX4
 Radial distance

o 21 —
R* = 22, + 5 = det(xy) , Xpy = ( _ )
o L

* Lorentz group SL(2,R) x SL(2,R)/Z, acts by

Null infinity: |R?| = oo

aa
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Noncommutative Klein Space

* Noncommutative structure: promote x; to Hermitian operators satisfying the Wick
algebra

T

), 3] A

9) T IS a
central term

= [Zl, Zl] — 17

22 2]

* Euclidean spacetime: z;,Z; = x; £ ix; are not Hermitian but conjugate to each other
* x;,X; play roles of X, P while z;,z, are like a,a’
* Klein spacetime: z;,Z; are Hermtian and obtained by canonical transf from x, x;

The canonical symmetries contain the Lorentz group in (2,2) signature!
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Renormalization = Radial Direction

* The notion of holographic code emerges when we interpret 7 as a renormalization scale

* Follows from noncommutative geometry: the noncommutative 3-sphere is constructed by
introducing (in Euclidean signature)

51' — R_lzi ’ fi — Z‘R_l 7 is renormalized

l
according to a radial scale

* Renormalized algebra

_.»;.,e:j = —i78;+O(1/RY , T = 7R

. 2
* Asymptotically - expect large R Suggests the existence

- null im‘tg: R2 S o0 of the code in AFS

12 [Omori, Maeda, Miyazaki, Yoshioka, ‘98]



Twistor Embedding

* In flat space, twistor variables (1, ) € RP° are defined projectively by
Projective property

incidence relation: ,ua(ﬂ) = X, yK Aw)~tdp) . reR

s =d—wand Gy A% can be parameterized by a homogeneous real coordinate z

are coordinates of

i + + +
the celestial torus g sinx— cos x_ N 1’1 L, tanx_
2 2 7 P
* Key observation:
1/2 (k)
inci ~ — a The global sector of it
incidence relation —»  H,(2) = Z 7 e global sector of its
7kt mode expansion
k=—1/2

|
We can interpret u (z) as a conformal field with chiral weight h = 5

13



Twistor Embedding

1/2 (k)

H 12 _ = -1/2 _
@ =) T ui ==z, wi'"? =z,
=11 i =z wt? = g
. . , . 1
Commutation relation: [//ték),//tﬂ(])] = 76 € k,j == 5

e Another note: the RP! z-line can be continued to a circle S!

~ ~(k) _ikxt
/’ta(x-l_) — Z Iué )elkx
k==x1/2

14 [Adamo, Mason, Sharma, '21], [Mason, '22]



From Fuzzy Spacetimes to Qubits

(u=V2, 1y 12 7} and
{uf?, u= 17} are two reps of
| | 1 Heisenberg algebra
Commutation relation: [ﬂo([k),,uﬂ(])] = 76 €ap k,j == 5

* Recall: z and 7 play the role of X and P — natural to quantize the system in z, 7
or equivalently u® — a pair of quantum harmonic oscillators

* Wick algebra only admits infinite-dimensional reps

* We need: finite-dimensional reps

15



From Fuzzy Spacetimes to Qubits

» Step 1: “"exponentiate” the alegbra: Heisenberq lie algebra — Heisenberg lie group

) — piud L (0) o(—K) — it o(=h) 5 (0

satisfying 1 84

Its rep acts on the

8+

Hilbert space

* Step 2: truncate the Hilbert space of a quantum harmonic oscillator — the one of a qubit

For each k, the Heisenberg group realizes U(2) if we take 7 = n!

2-qubit System
General statement: ¢ = 2n/N
realizes U(N) for even N. (Without loss of generality, we omit the k index

and focus on one copy of them)

" [Hoppe, '89]



2-qubit System

8+8- — — 8_8+
* Generators of U(2) take the following form

G(a,b) — ei(a,u++b,u_) — (_1)61[9/2 g_cll_ gé , (CZ, b) = Z2 X Z2
* They admit a two-dimensional rep

G(o,()) =1, , G(I,O) — 01 , G((),l) — 03 , G(l,l) — 0

* Vector space = qubit Hilbert space

Projection condition to define a qubit: S, = g% =1

17



Gottesman-Kitaev-Preskill Code

The embedding of qubits is essentially the well-known GKP code!

Encoding a qubit in an oscillator*

Daniel Gottesman, (12t Alexei Kitaev,(V* and John Preskill(3)$
W Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA
) Computer Science Division, EECS, University of California, Berkeley, CA 94720, USA
) Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA

 Embed a finite-dimensional code space in the infinite-dimensional Hilbert space

* Exploit the noncommutative geometry of phase space to protect against errors
that shift the values of the canonical variables

18 [Gottesman, Kitaev, Preskill, '00]



Gottesman-Kitaev-Preskill Code

Our Construction

Stabilizer Code K ohysical

exponential operators g

X,2 gates

Error correcting
Error

g:

stabilizer of the code

L

qubit condition g% =1

24
24

code subspace condition * Logical operator

bosonized operators G,

: - ... code subspace
logical (Pauli) operators logical P

vertex operators ¢'iZthiz)

errors

We will see how this explicitly works shortly..
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Symmetries: continuous

 Symmetries for 2-oscillator system: linear transformations that preserve

1

0] = i, kj=s

* Kahler manifold: equipped not only the metric but also the symplectic structure
ds* = Qudz' © d7 , ¥ = Q dz' A d7

« u®™: two types of indices — two subgroups of Sp(4,R) naturally follow

GL(2)ef; /’to(ck) s (Aa)kz ﬂo(el) , 0 =—,+
1 1
2°2

GLQ)ign : 1 = (AD),/ u}") , k=

20



Symmetries: continuous

* This exercise tells us: @ and k indices can be viewd as a SL(2) C GL(2) weight
measured by

) 1 © b . The normal ordering:
LO = Z //t(+//t_) S y, sits at the left of p_
[T
k=*+1/2
1
k
it k=+1/2

» GL(2)..., also preserve R?

right
- GL(2)

- GL(2),41 preserve the Kahler structure GL(2),. as non-Kahler transformations

C Lorentz group Call GL(2) as Kahler transformations

right right

21



Symmetries: discrete

Symmetries for 2-qubit system: must also preserve

g+=el/4¢ : g+g_ — eiTg_g_l_ , T=T & gi:l

Sp(4,R) — Sp4,72)

also allows transformations such that - C2m+1)r , me ”Z

= the full discrete Lorentz transformations are symmetries of 2-qubit system

22



Clitfford Group

symmetry for a 2-qubit system = Clifford group

* Pauli operator acting on the Hilbert space: G, ;) ® G, 4 (Pauli string)

« Clifford group: a subgroup of U (2°) which preserves this factorization

Given the symplectic rep of the Pauli string, the Clifford group exactly describes the 2-qubit symmetry

G(a,b) — ei(aﬂ++b,u_) — (_1)61[9/2 g_ciz_ gé , (Cl, b) = Z2 X Z2

Clifford group is finitely generated by three unitary gates

23 [Gottesman, Kitaev, Preskill, '00]



CNOT = Lorentz transformation

» Controlled-NOT (CNOT) gate: only one involves entangling the 2-qubit system

la) @ |b) — |a)®|a+Db) _ (1 _ (0
N 0=(o) - 1= (1)
‘Control’  ‘Target’

* It flips the 2nd qubit only when the 1st one is "activated’

71 —Z _ 71 —Z
SL(2,R) ight = SL(2,2) g OF CNOT ) - I I b
L] 0 1 o <

half of the Lorentz group

[Gottesman, 98]

54 [Gottesman, Kitaev, Preskill, ’00]



Clifford Gates

* Non-kahler transformations: SL(2,R) — SL(2,Z) — symmetry group of a single qubit

» Hadamard or Fourier gate (F)

(736
* Phase gate (P)

P () - (5 ) 60

[Gottesman, 98]

25 [Gottesman, Kitaev, Preskill, '00]



Outline

From Fuzzy Spacetimes to Qubits

“n”’: N-dimensional

Hilbert space

From Qubits to Qunits

Celestial CFT from Quantum Error Correction
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From Qubits to Qunits

« Consider a field i (x1) valued in R* defined along the x* cycle of Klein space.

Modes i
generalize the notion of
o AN ~(k) ikx™t ~ N ~(k) ikx™T z,Z coordinates
//ta(x ) o Z /’tgx )e — /’ta(x ) o Z //tg{) €
k==%1/2 kET+Z

» The emergence of N-dimensional Hilbert spaces (qunits) follows from truncating
the series (assume even N)

N-1

5
ﬂa(x+) _ Z ﬂg{k) otkxt Z ﬂg{k) pikx
kE++Z =—21

27



From Qubits to Qunits

* Truncation of the series can be realized by discretizing the torus

Define the Hilbert space by imposing [ﬂ_(ijr),ﬂJr(x,j)] = ity

S
N 2rj 7 & _ _
ok 0.0] = w5 E = k= s
j=0,.,N—1 N 7 N 2 2
-
2-qubit to N-qunit
Recall that [@,@] = —i#5,+ O(1/RY) | & = é > N R?

23



A single qunit GKP

. 2T
[,bta,//tﬁ] = IT€y , T = ~ Nel2Z,
g.8_=e"g g,

* Introduce the unitary operator ,
S, commute with g,

g, = e and S,:= gV

 Code subspace: S, =1 simultaneously diagonalize S, and one of g, (Z)

X:l1) — [ +

 Logical operators: g, (analog of 6, and o5 in qubit) v what else?

ol 14u]

Most general operator: GA — expi </1+//t_|_ + /1_/1_)

29



A single qunit GKP

* Displacement operators satisfy the Weyl algebra

These operators form a closed

i=[A4,] — it[AA] [ : ion N2
G}th/IZ e 2t G/11+/12 = e " G/lzG/h algebra of dimension

* Logical operators:

|G, 4] 0 = (4,,4) € ZyX Zy “Stabilizer lattice”

* Write a basis of #Zy

SL(2,R) symmetry is

. Two different vacua: |0), = Z gl S1|r) which satisfy g, [0), =[0). spontaneously broken

p9q€ZN

* Construct the qunit by acting with g_: [n), = gZ|0), , n=0,...,.N—1

30



A single qunit GKP

* Go beyond the code subspace ;rror syndrome

Sely), = ey, § = (8y,5.) Sy~ Sy N

* Errors acting on our code subspace
E, = expi(é+/4++é_,u_>

* They can be measured by evaluating the stabilizer since they shift the s,

, 2 L
. A 1 [2x
Errors can be diagnosed when |Aé. | < S\ v

Small errors < soft spacetime fluctuations

31




N-qunit System

N-—-1 N-—-1

& O — ; k+1 < <
[,ua ,,uﬁ] meaﬁ5 : > < k1 < >

* Code is constructed in the same wauy:
(0
g == e and SW:= (g

* Logical operators

_N-1 N-1 .
Gﬂ( o '®...® G;Nfl) = exp | i Z (A u™]
2

2

* Symmetry: Sp2N,R) — Sp(2N, Z)

\ hints on the CFT side..

32



Continuous Symmetries

Two natural subgroups: 7 left %right
* only transform k index * only transform a index
* GL\N) A = My, ,ufrk),uff) * N/2 copies of GL(2),;,, Kahler transformation
e D : : 2) _ k), (—k
Discrete (truncated) Virasoro: ( ) Z ,u((a),ué) ). € Wright
L, @ M= Oryjm (5 — k) Generalize to nonlinear generators: w_,

Check our paper for

more interesting [Lm’ ﬂék) — (% 4 k) M0({k+m)

discussions on it!
Left (hon-Kahler): Virasoro

Truncated: only 2N — 3 of them act nontrivially Right (Kahler): a color wy, , = UN — )

33



Outline

From Fuzzy Spacetimes to Qubits
From Qubits to Qunits

Celestial CFT from Quantum Error Correction

Emerge as N - o©
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Holographic code: from qunits to CCFT

* To construct a holographic code, we insert N-qunits along the
xT-cycle

W () -
/’to(z ),,M'é) — lTeaﬂ5k+l

we allow 7 to flow as 7 « 1/N, 1/R?

 As approaching to the null bndy R* = o0 and N = oo, the N
-qunit system is anticipated to flow towards a CFT as its
continuum limit r

Next: 1. Under large N limit, how CFT emerges

2. Physical meanings of the code: physical states, logical states, and errors

35



CFT from large N

e Consider N —- o

m
. The truncated Virasoro becomes the actual Viraroro L, — Z (? — k) 3/4J(rk) (m=k) .
k€EZ+1/2

N-1

—5 (k) (k)

. The oscillator field //ta(Z) = Z /Za - /,ta(z) = Z /Za 1 [ﬂ;">,ﬂﬁ(l>] = iTGaﬂ5k+l IS
k=—NT_1 22 k€Z+1/2 < 2 equivalent to the; OPE
L 1 Ho(21) Hg(Z5) ~ ;—Teaﬂ
. 12
. Define T(z) = Z Zm’:’iz = Eeaﬂ D 1o(2) O pp(2)
mesZ

which is the stress-energy tensor of a holomorphic CFT: the ¢ = 1/2 free fermion!

* The internal U(N) becomes Lw,.

(P) — - ;
W — X
al...ap(z) IM(OQ(Z) Map)(Z) [Adamo, Mason, Sharma, ‘214, 21B]

. [Guevara, '22]



Supertranslation states

I (
 Code states: under N - o M°7Xpa”8'°”' with chiral weight i = 1/2

/\

G T®..®G )~ F, = exp iZ[n(k)ﬂ(k)]> = eXP( ﬂg—[n(z)ﬂ(z)])

N-1

2 2 k

* Logical states satisfy n\¥ € Z

Code states = supertranslation eigenstates (hard states)

protect hard states with quantized soft hair

] = zr/(m)f

T

Supertranslation charge carried by &,

e Supertranslation charge action: [ S

37



Momentum eigenstates

| dz
. ¥, = exp (z()—,[ﬂ(z)//t(z)]) states

) 2mi

* carry an infinite set of soft hair
* generalize the momentum states

* How to recover the usual momentum eigenstates?

~/

n(7) = —2 —  Giw) = ol W)
a 7 — W

33



Errors

* Generic possible error acting on the code subspace takes the following form

E = exp iz [K(j),u(_j)]
J

* Valid error syndrome requires

. dz . 1 27
(Nt —_ I A Vo =

K = | P Z K—(Z < —
| | ) 2mi @) 2 N

o Consider x,.(z) = > error E_= inserting a graviton

Z—W
. TU _
QEC Condition: |w |’ 1/20)\/N < \/; , |w| <1

39



Error = Soft Insertion

2 /A _ _ T
\w\”’zwx/ﬁ<\g,\w\<1. e WLIE <1 e S A LA = [

Tunable parameters:
Correctable errors = soft graviton

* w: the energy of the inserted graviton state insertions near the hard state

* (w,w): location of the insertion Errors shift the wavefunction via

At

* N: an (even) integer, the dimension of the N+(z) = 14(2) A . — W
logical subspace v\

One can trade off between these parameters w as the pole

Energy w and w can be obtained by
measuring the stabilizers

40



Summary

1. The quantization of the noncommutative geometry (Klein spacetimes) allows us to
introduce the machinery of QECC

2. The noncommutative structure [ﬂék),//tg)] = [T€, 5! — qunit as GKP code

3. Given that the central term 7 can be renormalized based on R? and N, we
postulate the existence of a "holographic code’

Vix bulk H boundary

/ N\

N-qunit at K, Under N — oo, the N-qunit

system flows to a CFT (a toy
model of CCFT)

41



Outlook

IR Divergences?

Spin Models for Celestial CFT?

Entanglement entropy?

42



Thank YOU!



