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Abstract
Deciphering the mathematical structures in the one-dimensional supersymmetric
models that secretly encode the information of higher-dimensional counterparts is
one of the key tasks in the SUSY holography conjecture. The graphical represen-
tations of 1D, N-extended Super-Poincaré algebra provide a powerful tool.
In this work, a conjecture is made that the weight space for 4D, N-extended su-
persymmetrical representations is embedded within the permutohedra associated
with permutation groups Sd. The fact that Klein’s Vierergruppe of S4 plays the
role of Hopping operators provides strong evidence supporting this conjecture. It
is shown that the appearance of the mathematics of 4D, N = 1 minimal off-shell
supersymmetry representations is equivalent to solving a four-color problem on
the truncated octahedron. This observation suggests an entirely new way to ap-
proach the off-shell SUSY auxiliary field problem based on IT algorithms probing
the properties of Sd.

Motivation
The SUSY Holography conjecture was first proposed in [1] as reduce higher-

dimensional supersymmetric models to one dimension, and one-dimensional models
encode the structure of their higher-dimensional counterparts. In this program, the
key object to study is the one-dimensional models.
Graphs have demonstrated an unexpected power to “clear out the mathematical

underbrush” encountered by theoretical physicists. Feynman Diagrams are a spec-
tacular example of this. While we make no similar claims about the breadth of
possible impacts from the developments which began with the recognition of the ex-
istence of the GR(d, N) (“Garden Algebras”) as a foundation of supersymmetric
representation theory and their evolution into the introduction of adinkras [2], we
do hold that adinkras provide similarly important tools within the domain of the
representation theory of supersymmetrical theories. One hint about this involves the
pathways that adinkras have opened from supersymmetrical theories, including field
theories, to error-correction codes.

Adinkras Representation of po1|N

Vertex bipartition Bosonic/Fermionic bipartition
Colored edges by I Action of QI

Dashing Sign in QI

Change of rank Power of ∂τ
Rank function Engineering dimension

Adinkras
1D, N-extended Super-Poincaré algebra is generated by the time translation gener-

ator ∂τ and N supercharges QI (I= 1, . . . ,N), satisfying

{QI, QJ} = 2iδIJ∂τ , [QI, ∂τ ] = [∂τ , ∂τ ] = 0 . (1)

The generic representation of this algebra, also called supermultiplet in physics, is

formed by a set of fields {ϕA, ψB}, where A,B = 1, . . . , d. ϕA is a bosonic field
while ψB denotes a fermionic field. They are related to each other via supersymmetry
transformations which can be expressed by the following.

QI ϕA(τ ) = c ∂λτψB(τ ) , QIψB(τ ) =
i

c
∂1−λτ ϕA(τ ) , (2)

where c = ±1 and λ = 0, 1. Then, there are four types of configurations in total.
Start from (2), one can define a “Adinkra” to graphically represent a supermultiplet
following the rules shown in the table below.

Valise Adinkra is a special class of adinkras in which all bosons sit in the same
level and all fermions sit in the same level. SUSY transformation laws encoded by
valise adinkras can be described completely by L adjacent matrices as

DI ϕA = i(LI)AB ψB , DIψB = (RI)BA (∂τϕA) , RI = (LI)
T . (3)

These N L/R adjacent matrices consequently satisfy the so-called “Garden Algebras”
GR(d, N),

LIRJ + LJRI = 2δIJ Id , RI LJ + RJ LI = 2δIJ Id . (4)

N=4: Permutohedron
When N=4, the minimal supermultiplets contain 4 bosons and 4 fermions, namely
d = 4 and L-matrices are 4× 4. In order to decipher the mathematical structure that
contains higher-dimensional information, a good starting point is to study the chro-
motopology of adinkras, where we always set c = 1. Then the L adjacent matrices
are elements of the symmetric group S4.
One can use permutohedron to visualize S4. Consider the projection from 4D,

N = 1 SUSY to 1D, N= 4 SUSY, a dissection of S4 is required to be consistent with
SUSY [3]. We would like to find out how this can be uncovered without the use of
supersymmetry-based arguments, relying solely on properties of S4. This would lead
to a better understanding of which mathematical structures inside adinkras secretly
contain information from higher dimensions, which provides a possibility to obtain
insights for higher-dimensional theories from 1D statements.

Klein’s Vierergruppe as Hopping Operators In this work, one of the main
statements is that the elements of Klein’s Vierergruppe serve as Hopping operators.

H1 =() H2 = (12)(34) H3 = (23)(12)(34)(23) H4 = (23)(12)(34)(23)(12)(34)

Next stop of this research program would be considering N=8 case, corresponding
to 4D, N = 2 SUSY, and identifying the Hopping operators in the “Omnitruncated
7-simplex” which has 40,320 nodes and 141,120 edges.
1D, N=16 Adynkrafield from projection: It contains 32,768 bosons and
32,768 fermions. It also contains the information associated with the Lorentz repre-
sentations (via the Young Tableaux) of the original 10D, N = 1 scalar supermultiplet
for which it is the hologram! Definitions of irreducible bosonic/spinorial YT’s and
more discussions can be found in 2006.03609.

ĜAdnk(τ ) =

{
Φ(τ ) +

1

2
IR

Φ{a1b1c1}(τ ) +
1

4!

IR,−

Φ{a2|a1b1c1d1e1}+(τ ) +
1

6!

IR,−

Φ{a2b2|a1b1c1d1e1}+(τ )

+
1

6!
IR

Φ{a2,a3|a1b1c1}(τ ) +
1

8! IR
Φ{a1,a2,a3,a4}(τ ) +

1

8!
IR

Φ{a1b1c1,a2b2c2}(τ )

+
1

8!

IR

Φ{a2,a3|a1b1c1d1}(τ ) +
1

10!
IR

Φ̂{a2,a3|a1b1c1}(τ ) +
1

10!

IR,+

Φ{a2b2|a1b1c1d1e1}−(τ )

+
1

12! IR

Φ̂{a1b1,a2b2}(τ ) +
1

12!

IR,+

Φ{a2|a1b1c1d1e1}−(τ ) +
1

14!
IR

Φ̂{a1b1c1}(τ ) +
1

16!
Φ̂(τ )

}

+ ℓ

{
16 Ψα(τ ) +

1

3!
16

IR

Ψ{a1b1}
α(τ ) +

1

5!

16

IR,−

Ψ{a1b1c1d1e1}+
α(τ ) +

1

5!
16

IR

Ψ{a2|a1b1}
α(τ )

+
1

7!
16 IR

Ψ{a1,a2,a3}α(τ ) +
1

7!

16

IR

Ψ{a2|a1b1c1}
α(τ ) +

1

9!
16 IR

Ψ{a1,a2,a3}
α(τ ) +

1

9!

16

IR

Ψ{a2|a1b1c1}α(τ )

+
1

11!

16

IR,+

Ψ{a1b1c1d1e1}−α(τ ) +
1

11!
16

IR

Ψ{a2|a1b1}α(τ ) +
1

13!
16

IR

Ψ{a1b1}α(τ ) +
1

15!
16Ψ

α(τ )

}

References
[1] S. J. Gates Jr., W. D. Linch III, and J. Phillips, “When superspace is not enough,”
Nov. 2002. arXiv: hep-th/0211034.

[2] M. Faux and S. J. Gates Jr., “Adinkras: A Graphical technology for supersym-
metric representation theory,” Phys. Rev. D, vol. 71, p. 065 002, 2005. arXiv: hep-
th/0408004.

[3] I. Chappell II, S. J. Gates, and T. Hübsch, “Adinkra (in)equivalence from Cox-
eter group representations: A case study,” Int. J. Mod. Phys. A, vol. 29, no. 06,
p. 1 450 029, 2014. arXiv: 1210.0478 [hep-th].

[4] C. Doran, K. Iga, J. Kostiuk, G. Landweber, and S. Mendez-Diez, “Geometriza-
tion of N -extended 1-dimensional supersymmetry algebras, I,” Adv. Theor. Math.
Phys., vol. 19, pp. 1043–1113, 2015. arXiv: 1311.3736 [hep-th].

https://link.springer.com/article/10.1007%2FJHEP05%282021%29077
https://arxiv.org/abs/2006.03609
https://arxiv.org/abs/2006.03609
https://arxiv.org/abs/hep-th/0211034
https://arxiv.org/abs/hep-th/0408004
https://arxiv.org/abs/hep-th/0408004
https://arxiv.org/abs/1210.0478
https://arxiv.org/abs/1311.3736

