Nonlinear $\mathcal{N} = 2$ Supersymmetry and D2-brane Effective Actions

Yangrui Hu^{*} and Konstantinos Koutrolikos

Brown Theoretical Physics Center and Department of Physics, Brown University, USA yangrui_hu@alumni.brown.edu Based on arXiv 2206.01607

Overview

Dp-branes acquire effective nonlinear descriptions whose bosonic parts are given by the Dirac-Born-Infeld action. This nonlinearity has been proven to be a consequence of the partial $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ supersymmetry breaking, originating from the solitonic nature of the branes. In this work, we focus on the effective descriptions of D2-branes, which play important roles in the Type IIA string theory.

• Using the Goldstone multiplet interpretation of the action and the method of nilpo-

In our cases, $\Psi(x) = \frac{x}{1-x+\sqrt{1-2x}}$. The bosonic part of the effective superspace D2-brane action is the 3D Born-Infeld theory as expected.



- tent $\mathcal{N} = 2$ superfields, we construct the 3D, $\mathcal{N} = 1$ superspace effective action which makes the first supersymmetry manifest and realizes the second, spontaneously broken, supersymmetry nonlinearly.
- This description is in agreement with previously known results for the supersymmetric effective action of D2-branes [1, 2]. We show that there are two such effective superspace actions, which are generated by the 3D, $\mathcal{N} = 2$ vector and tensor multiplets after expanding them around a nontrivial vacuum and enforcing constraints that eliminate additional degrees of freedom.
- We find that these descriptions are related by a duality transformation which results in the inversion of a dimensionless parameter. Moreover, we derive the explicit bosonic and fermionic parts of the effective spacetime actions.
- We consider the deformation of the Maxwell-Goldstone superspace action by the characteristic Chern-Simons-like, gauge-invariant, mass term of 3D vector multiplet.

Maxwell- & Tensor-Goldstone Multiplets 2.

We aim to interpret the Maxwell and Tensor supermultiplets as the Goldstone multiplets that accommodates the Goldstinos associated with the $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ spontaneous supersymmetry breaking in 3D generated by the solitonic D2-brane solutions of type IIA string theory. The review of 3D, $\mathcal{N}=1$ Maxwell and Tensor supermultiplets is summarized in the following table.

Duality

In 3D, the vector multiplet is no longer self-dual as in 4D but it maps to the tensor multiplet. We show that this duality map survives between the Maxwell-Goldstone and Tensor-Goldstone multiplets. We start with the following "parent action" and show that it can generate Maxwell- and Tensor-Goldstone multiplets respectively by integrating out superfields in different orders.

In this description, superfields Λ , X, and W_{α} are unconstrained and the duality term Lagrange multiplier U_{α} satisfies the constraint $D^{\alpha} D_{\beta} U_{\alpha} = 0$ (Tensor multiplet).

$$S_{\mathbf{P},\mathbf{A}} = \int d^3x \, d^2\theta \left\{ \Lambda \left[W^{\alpha} W_{\alpha} \, + \, \frac{1}{2} X \, \mathbf{D}^2 X \, - \, \kappa \, X \right] \, + \, \tau \, X \, + \, g \, \mathbf{U}^{\alpha} \, \mathbf{W}_{\alpha} \right\}$$

Integrating out \mathbf{U}_{α} first restores the vector constraint $\mathbf{D}^{\alpha} W_{\alpha} = 0$; the Lagrange multiplier Λ imposes the nonlinear constraint for X. The resulting action is S_{MG} .

Integrate out
$$\mathbf{W}_{\alpha}$$
 first, the result is the following
 $S = \int d^3x \, d^2\theta \left\{ \tilde{\Lambda} \left[U^{\alpha}U_{\alpha} - \frac{1}{2}\tilde{X}\mathsf{D}^2\tilde{X} - \tilde{\kappa}\tilde{X} \right] - \tilde{\tau}\tilde{X} \right\}$
where $\tilde{\Lambda} = -\frac{g^2}{4\Lambda}$, $X = \frac{g\tilde{X}}{2\Lambda}$, $\tilde{\kappa} = \frac{2\tau}{g}$, $\tilde{\tau} = \frac{g\kappa}{2}$.
This action corresponds to the S_{TG} ,
since the Lagrange multiplier $\tilde{\Lambda}$ imposes

	Field Strength	Bianchi Identity	Prepotential	Gauge Transformation
Maxwell	W_{lpha}	$D^{\alpha} W_{\alpha} = 0$	$W_{\alpha} = \frac{1}{2} \mathbf{D}^{\beta} \mathbf{D}_{\alpha} \Gamma_{\beta}$	$\delta\Gamma_{\alpha} = \mathbf{D}_{\alpha} K$
Tensor	$G(U_{\alpha} = \mathbf{D}_{\alpha} G)$	$\mathbf{D}^{\alpha}\mathbf{D}_{\beta}U_{\alpha}=0$	$G = \mathbf{D}^{\alpha} \widetilde{\Gamma}_{\alpha}$	$\delta_{G}\tilde{\Gamma}_{\alpha} = D^{\beta}D_{\alpha}\Lambda_{\beta}, \delta_{G}\Lambda_{\beta} = D_{\beta}\Lambda$

Bagger-Galperin Following [3], we search for the most general transformation δ^* of W_{α} (U_{α}) s.t. • δ^* is consistent with Bianchi identities and can be interpreted as a SUSY transformation • It must involve the second SUSY partner of W_{α} (U_{α}) which is a scalar $\mathcal{N} = 1$ superfield X (\tilde{X}) • It must contain a characteristic shift which is the hallmark of spontaneous SUSY breaking To eliminate the independent degrees of freedom introduced by $X(\tilde{X})$ and promote the 3D Maxwell (Tensor) multiplet to a Maxwell(Tensor)-Goldstone multiplet, we impose nonlinear constraints which are consistent with δ^* and their solutions allow the construction of the superspace actions.

	Maxwell-Goldstone	Tensor-Goldstone
General	$\delta_{\eta}^{*} W_{\alpha} = \eta_{\alpha} - \frac{1}{2\kappa} \left(D^{\beta} D_{\alpha} X \right) \eta_{\beta}$	$\delta_{\eta}^{*} U_{\alpha} = \eta_{\alpha} - \frac{1}{2\tilde{\kappa}} \left(D_{\alpha} D^{\beta} \tilde{X} \right) \eta_{\beta}$
transformation δ^*	$\delta^*_\eta X = \frac{2}{\kappa} \eta^\alpha W_\alpha$	$\delta^*_\eta \tilde{X} = \frac{2}{\tilde{\kappa}} \eta^\alpha U_\alpha$
Constraint	$\kappa X = W^{\alpha}W_{\alpha} + \frac{1}{2}\left(D^{2}X\right)X$	$\tilde{\kappa}\tilde{X} = U^{\alpha} U_{\alpha} - \frac{1}{2} \left(\mathbf{D}^2 \tilde{X} \right) \tilde{X}$
Solution	$X = \frac{2}{\kappa} W^2 \left[1 + \frac{T}{1 - T + \sqrt{1 - 2T}} \right]$	$\tilde{X} = \frac{2}{\tilde{\kappa}} U^2 \left[1 - \frac{\tilde{T}}{1 + \tilde{T} + \sqrt{1 + 2\tilde{T}}} \right]$
Superspace Action	$S_{\rm MG} = \tau \int d^3x d^2\theta X$	$S_{\text{TG}} = -\tilde{ au}\int d^3xd^2\theta\tilde{X}$

Volkov-Akulov Following [4, 5], the above results can be easily understood from the viewpoint of the manifest $\mathcal{N} = 2$ theories described by $\mathcal{W}(x, \theta, \tilde{\theta})$ and $\mathcal{U}(x, \theta, \tilde{\theta})$ respectively. To break the second manifest supersymmetry, we expand $\mathcal W$ and $\mathcal U$ around a **non-trivial vacuum** that preserves only the first supersymmetry and at the same time, we eliminate the remaining partner superfield by imposing the nonlinear constraint for \mathbf{X} .

The dimensionless parameter $\lambda = \frac{\kappa}{\tau}$ undergoes a standard inversion $\lambda \to \tilde{\lambda} = \frac{4}{q^2 \lambda}$.

Chern-Simons-type Mass Deformation 4.

A special property of the 3D vector multiplet which makes it very different from its 4D analog is the existence of a gauge-invariant Chern-Simons mass term $S_m = \frac{m}{2} \int d^3x \, d^2\theta \, \Gamma^{\alpha} W_{\alpha}$. After examining the gauge and the second supersymmetry transformation, we find that there exists a **one-parameter** (ξ) family of deformations of the Maxwell-Goldstone action

$$S_{\xi} = \frac{\xi m}{2} \int d^3x \, d^2\theta \left\{ \Gamma^{\alpha} W_{\alpha} - 2\kappa \, \theta^{\alpha} \, \Delta_{\alpha} \right\} \,. \tag{2}$$

• $S_{\mathcal{E}}$ respects the second supersymmetry transformations (3) and gauge transformations.

• The superfield Δ_{α} is defined as $D^{\alpha} \Delta_{\alpha} = X$, which enjoys the gauge transformation $\delta \Delta_{\alpha} = D^{\beta} D_{\alpha} K_{\beta}$ and $\delta K_{\alpha} = \mathsf{D}_{\alpha} K$.

• The second supersymmetry transformations of Γ_{α} and Δ_{α} are

$$\delta^* \Gamma_{\alpha} = \frac{1}{\kappa} \eta^{\beta} \, \mathsf{D}_{\beta} \, \Delta_{\alpha} \, + \, \Phi_{\alpha}^{(sp)} \, , \, \, \delta^* \Delta_{\alpha} = \, -\frac{1}{\kappa} \eta^{\beta} \, \mathsf{D}_{\beta} \, \Gamma_{\alpha} \, . \tag{3}$$

 $\Phi_{\alpha}^{(sp)} = -2\eta_{\alpha}\theta^2$ is the special solution of the inhomogeneous equation $D^{\beta}D_{\alpha}\Phi_{\beta}^{(sp)}=2\eta_{\alpha}$. The full solution of the homogeneous equation $D^{\beta} D_{\alpha} \Phi_{\beta} = 0$ corresponds to a gauge transformation of Γ_{α} and thus can be dropped.

• The second term explicitly breaks the first supersymmetry.

the nilpotency condition. Then the second supersymmetry transformation laws reduce to δ^* and the nonlinear constraints match with what we obtained following Bagger and Galperin.

	$\mathcal{N}=2$ Vector Multiplet	$\mathcal{N}=2$ Tensor Multiplet
Scalar Superfield	$\mathcal{W} = \Phi(x,\theta) + \tilde{\theta}^{\alpha} W_{\alpha}(x,\theta) - \tilde{\theta}^2 F(x,\theta)$	$\mathcal{U} = \Phi(x,\theta) + \tilde{\theta}^{\alpha} U_{\alpha}(x,\theta) - \tilde{\theta}^2 F(x,\theta)$
Irreducibility Condition	$\mathbf{D}^2 \mathcal{W} = \tilde{\mathbf{D}}^2 \mathcal{W}$, $\mathbf{D}^\alpha \tilde{\mathbf{D}}_\alpha \mathcal{W} = 0$	${\sf D}^2 {\cal U} = - { ilde{\sf D}}^2 {\cal U}$, ${\sf D}^lpha {\sf D}_eta { ilde{\sf D}}_lpha {\cal U} = 0$
Nilpotency Condition	$\mathcal{W}=\langle\mathcal{W} angle+\mathcal{W}$, $\mathcal{W}^2=0~\mathbf{D}^{lpha}~\widetilde{\mathbf{D}}_{lpha}~\mathcal{W}=0$	$\mathcal{U}=\langle\mathcal{U} angle+\mathcal{U}$, $\mathcal{U}^2=0$
Condensate	$\langle \mathcal{W} angle = \kappa ilde{ heta}^2$	$\langle {\cal U} angle = ilde{\kappa} ilde{ heta}^2$

D2-brane Actions Starting from the superspace action, we extract the spacetime component action, which can be written as a member of the Cecotti-Ferrara class of actions

$$S_{\mathsf{CF}} = \tau \kappa \int d^3x \left\{ T \big|_{\theta=0} + \frac{2}{\kappa^2} \int d^2\theta \,\Psi(T) \,W^2 \right\} \,. \tag{1}$$

References

- [1] E. Ivanov and S. Krivonos, "N = 1 D = 2 supermembrane in the coset approach", *Phys. Lett. B* **453** (1999) 237, [Erratum: Phys.Lett.B 657, 269 (2007), Erratum: Phys.Lett.B 460, 499-499 (1999)], arXiv:hep-th/9901003.
- [2] E. Ivanov, "Superbranes and super Born-Infeld theories as nonlinear realizations", Theor. Math. Phys. 129 (2001) 1543, arXiv:hep-th/0105210.
- [3] J. Bagger and A. Galperin, "A New Goldstone multiplet for partially broken supersymmetry", Phys. Rev. D 55 (1997) 1091, arXiv:hep-th/9608177.
- [4] M. Rocek, "Linearizing the Volkov-Akulov Model", Phys. Rev. Lett. 41 (1978) 451.
- [5] M. Rocek and A. A. Tseytlin, "Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions", Phys. Rev. D 59 (1999) 106001, arXiv:hep-th/9811232.